• Title/Summary/Keyword: Optimum efficiency

Search Result 2,726, Processing Time 0.029 seconds

Optimum Design of a Viscous-driven Micropump with Tandem Rotating Cylinders (한 쌍의 실린더를 가진 점성구동 마이크로 펌프의 최적설계)

  • Choi, Hyung-Il;Kim, Ki-Dong;Cho, Il-Dae;Choi, Dong-Hoon;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.378-385
    • /
    • 2004
  • Viscous-driven pumping is a very promising type in microscale applications. However, there exist a few disadvantages such as low efficiency and small volume flow rate. In the present study, a pump with tandem rotating cylinders and its optimum synthesis are proposed fur enhancing pumping performance. First, using an unstructured grid CFD method, we investigate the effects of geometrical parameters and then the performance of the pump with tandem cylinders is evaluated. Next, an optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model, namely, Modified Method of Feasible Directions (MMFD). This technique is used to optimize the geometrical parameters of the pump, fur maximizing pumping efficiency. From the optimization results, it is believed that the present optimum synthesis is robust and has a potential fur other microfluidic device design.

The Optimum Control Study for Improving Efficiency of the Small Hydropower Generation in Water Pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with 00 hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

A Study on the Optimum Design of Resonance Intake System For 4 Cylinder Diesel Engines (4실린더 디젤기관 공명 흡기계의 최적설계에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.836-843
    • /
    • 1998
  • In this paper effects of resonator within intake manifold system on volumetric efficiency were investigated n the 4-cylinder and 4 stroke Diesel Engines. The effects of resonator system were analyzed on resonant speed and on volumetric efficiency for a complicated intake system with resonator was confirmed. And the optimum design method of the resonant system which had the overall high and flat characteristic of volumetric efficiecncy was proposed.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Design of Premium Efficiency Level of single-Phase Induction Motor using Parameter Analysis (파라미터 해석을 통한 프리미엄급 단상 유도기 효율 설계)

  • Jang, Kwang-Yong;Kim, Kwang-Soo;Lee, Joong-Woo;Jang, Ik-Sang;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.672_673
    • /
    • 2009
  • In this paper seeks the parameter which relates with the efficiency from premium efficiency level single-phase induction motor. Also it compares with the parameters and it analyzes and an optimum parameter it seeks by FEM. Consquently, a optimal design is accomplished from the this paper. Also parameters compare efficiency. And it analyzes and studies about optimum parameter by FEM. The sample single-phase induction motor selection selected existing premium level motor. We analyze each parameter using 2-D finite element analysis (FEM). According to Study of losses and Design flow, losses and efficiency can be explain by many parameter. So this paper present optimal parameters. Finally, this paper presents the method which raises the efficiency of premium efficiency level single-phase induction motor.

  • PDF

Sludge Solubilization using Microwave Irradiation in the Presence of Fe Powder

  • Yi, Min-Joo;Choi, Hyun-Kyung;Han, Ihn-Sup
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, microwave irradiation, which is reflected by metals, was used to reduce the amount of sewage sludge, and the results were used to verify solubilization efficiency and determine optimum operation conditions. Biogas production and methane content of the gas under optimized conditions were measured with the biochemical methane potential (BMP) test. The sludge was taken from a thickened sludge tank at J sewage treatment plant (JSTP) in Seoul, Korea. For the experiments, 50 mL of sludge was filled in vessels and the vessels were irradiated with the power of 500, 600, 700, and 800W for 2~5 min. In addition, Fe powder was added by 0.01, 0.05, and 0.1 g to compare the efficiency with and without Fe powder. The results confirmed that solubilization efficiency was higher in the presence of Fe powder. The optimum conditions of 0.01 g addition of Fe powder with 800W irradiation for 5 min, yielded nearly 22.95% higher solubilization efficiency than without Fe powder. The BMP tests were carried out using sludge obtained from the experiments carried out under the optimum conditions. As a result, sludge subjected by 800W with 0.01 g of Fe powder for 5 min displayed the highest level of gas production and methane content. Through this study, it could be confirmed that solubilization efficiency increased by addition of Fe powder.

A Study on the Internal Grinding to Improving the Grinding Efficiency (내면연삭(內面硏削)의 가공능률향상(加工能率向上)에 관한 연구)

  • Kim, G.H.;Kang, J.H.;An, S.O.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.87-93
    • /
    • 1994
  • This paper describes on the establishment of an optimal internal grinding conditions for the purpose of improving the grinding efficiency against to the high-speed grinding. Through the fundamental grinding tests for the brittle and hardened material, we are concluded that high-speed internal grinding is effective to improve the grinding accuracy as well as the grinding efficiency. The obtained results are as follows: (1) Under the speed ratio $(V_w/V_g)$ is constant, it is possible to increase the grinding efficiency with satifying the constraint conditions. (2) Increasing the wheel velocity, surface roughness and out-roundness are improved. (3) Under the wheel depth of cut is constant and increasing the speed ratio, workpiece residual stress is decreased. The described method, in this paper, is capable of determining the optimum internal grinding conditions taking into account some constraint conditions, and practical algorithm for optimum internal grinding conditions are presented.

  • PDF

High Efficiency Design Considerations for the Self-Driven Synchronous Rectified Phase-Shifted Full-Bridge Converters of Server Power Systems

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.634-643
    • /
    • 2015
  • This paper presents a high frequency design approach for improving efficiency over a wide load range in the self-driven phase-shifted full-bridge converters for server power systems. In the proposed approach, a detailed ZVS analysis of the lagging leg switches in both the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM) is presented. The optimum dead time and the determination of the appropriate operation mode are given for high efficiency according to the load conditions. Finally, the optimum operation conditions are defined to achieve a high-efficiency. A laboratory prototype operating at 80 kHz, rated 1 kW (12 V-83.3 A), is built to verify proposed theoretical analysis and evaluations. The experimental results show that the maximum efficiency is achieved as 95% and 83.5% at full load and 5% load conditions, respectively.

Application of Surrogate Modeling to Design of A Compressor Blade to Optimize Stacking and Thickness

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Surrogate modeling is applied to a compressor blade shape optimization to modify its stacking line and thickness to enhance adiabatic efficiency and total pressure ratio. Six design variables are defined by parametric curves and three objectives; efficiency, total pressure and a combined objective of efficiency and total pressure are considered to enhance the performance of compressor blade. Latin hypercube sampling of design of experiments is used to generate 55 designs within design space constituted by the lower and upper limits of variables. Optimum designs are found by formulating a PRESS (predicted error sum of squares) based averaging (PBA) surrogate model with the help of a gradient based optimization algorithm. The optimum designs using the current variables show that, to optimize the performance of turbomachinery blade, the adiabatic efficiency objective is improved substantially while total pressure ratio objective is increased a very small amount. The multi-objective optimization shows that the efficiency can be increased with the less compensation of total pressure reduction or both objectives can be increased simultaneously.

A Study on the Optimum Design of Intake System for 4 Cylinder Diesel Engines (4실린더 디젤기관 흡기계의 최적설계에 관한 연구)

  • 조규철;강인철;남정길;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.104-113
    • /
    • 1997
  • In this paper, the effects of intake manifold systems on volumetric efficiency were investigated in the 4-cylinder 4-stroke cycle diesel engines. The effects of intake manifold system were analyzed on resonant speed and on volumetric efficiency. Resonant speed was calculated by acoustic theory and volumetric efficiency by the method of characteristics. The calculation results agreed well with rest results. It was assured that between the resonant speed and the volumetric efficiency there exists good correlation in multi-cylinder engines. As the results, the prediction of resonant speed was useful to design the optimum intake system. It was assured that the intake manifold systems for BOX-type and RAM-type have different characteristics on the trend of volumetric efficiency. Also a procedure to design the desirable intake manifold system was proposed.

  • PDF