• Title/Summary/Keyword: Optimum efficiency

Search Result 2,726, Processing Time 0.038 seconds

Effect of Coagulation and Homogenization on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (응집과 균질화가 팽화슬러지의 용존공기부상과 침전에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.68-74
    • /
    • 2007
  • The objective of this study is to examine the effect of the coagulation and homogenization in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effects of parameters such as dosage of coagulant and homogenization time were examined. The results showed that DAF and sedimentation was affected aluminum sulfate and anion polymer coagulant differently. At the optimum dosage of aluminum sulfate, thickening efficiency of DAF and sedimentation process were increase 1.25 time and 2.02 time, respectively. At the optimum dosage of anion polymer coagulant, thickening efficiency of DAF process was increase 1.35 time, but thickening efficiency at sedimentation was 1.06 time. When anion polymer coagulant of 0.5 mg/l was added in DAF process, water content of sludge was decreased from 96.6% to 90.7% in dewatering process using Buchner funnel test device. After homogenization(20500 rpm, 10 min), Sauter mean diameter of sludge floc was decreased from 631 ${\mu}m$ to 427 ${\mu}m$, however increase of flotation efficiency by DAF was only 1.09 time.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process (연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • This study was performed to find out the optimum condition for hydrogen production by changing mixture ratio from 3:7(food waste water : swine wastewater) without pre-treatment of food wastewater and swine wastewater using a continuous reaction process. It was confirmed that hydrogen generation according to pH is the highest in a condition of pH 5.5, and that the optimum pH for hydrogen production in case of mixing food wastewater with swine wastewater is 5.5 through this. Hydrogen generation according to HRT showed high hydrogen generation rate in case of 4 days rather than 3 days, and this involves largely in vitality of hydrogen producing bacteria according to variation of the HRT value, so it is judged that HRT also acts as an important factor to hydrogen producing bacteria. The organic removal efficiency recorded a removal efficiency of maximum TS 52%, VS 71%, TSS 83% and VSS 89% at the 6th day of operation, and it was confirmed that organic removal efficiency is possible even through an hydrogen production process.

Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process (유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향)

  • Yang, Eun-Gyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study was performed to determine the effect of the influent flow distribution ratio and hydraulic retention time(HRT) on removal of organic matter, nitrogen and phosphorus when domestic sewage was treated by the advanced step aeration(ASA) process. Results of the experiment for the determination of the optimum influent flow distribution ratio between the anaerobic reactor and the anoxic reactor showed BOD removal efficiencies of above 92.0% at all influent flow distribution ratios from 9:1 to 4:6. The highest T-N removal efficiency was 82.6% at the influent flow distribution ratio of 6:4. On the other hand, the highest T-P removal efficiency was 67.8% at the influent flow distribution ratio of 9:1. Considering both the T-N and T-P removal efficiencies, the influent distribution ratio of 6:4 was considered the optimum. Results of the experiment for the determination of the optimum HRT at the optimum influent flow distribution ratio of 6:4 revealed BOD removal efficiencies better than 92.7% at all HRTs from 12hr down to 6hr. The highest T-N and T-P removal efficiency were 82.6% and 59.5%, respectively both at the HRT of 8hr. In conclusion, the optimum influent flow distribution ratio and HRT for treatment of domestic sewage by the ASA process were determined to be 6:4 and 8hr, respectively.

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Optimum Design of Prestressed Concrete Girder Railway Bridge II : Optimum Section with 30m Span Length Accounting for Dynamic Stability (프리스트레스트 콘크리트 거더 철도교의 최적설계 II: 동적안정성을 고려한 30m 지간의 최적단면)

  • Lee Jong-Min;Kim Su-Hyun;Jung Jae-Dong;Lee Jong-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.102-109
    • /
    • 2006
  • The PSC girders which currently used at highway bridge have the standard cross sections about 25m, 30m and 35m span. Thus, in case of highway bridge design, the bridge designer can choose the adequate standard cross section according to constructional condition. However, in railway bridge design, there are limitations on reasonable bridge design considering circumstances of a construction site and conditions of location etc, because the PSC girders used at railway bridge have the cross section about only 25m span length. In this study, the optimum design for the PSC girder railway bridge with 30m span length has been performed. Also, in order to investigate the dynamic stability of railway bridge using the optimum section of PSC girder, dynamic analysis has been carried out. From the results of analysis, it is suggested to denote the optimum section which satisfied the structural safety, dynamic stability and economical efficiency all together.

Characteristics of Eleclrolytic Treatment of Dye Wastewater (염색폐수의 전해처리 특성)

  • 전법주;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.37-46
    • /
    • 1996
  • In this study, the effect of pH, Temp, dye concentration, distance of electrode, and the potential on the removal efficiency of dye-wastewater using electrochemical reaction were investigated. Optimum conditions for the electrochemical treatment of dye-wastewater were obtained that pH;7, 8V, electrode distance; 1cm and the reaction time for obtaining above 99% removal efficiency were 10 - 40min at each conditions, From this result, we can determine the instantaneous current efficiency and specific energy consumption, and we can provide the effective data for economical treatment of industrial dye-wastewater.

  • PDF

Optimal Efficiency Control of Wind Generation System Using Fuzzy Logic Control

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1750-1752
    • /
    • 2005
  • This paper presents a variable speed wind generation system where fuzzy logic controllers is used as efficiency optimizer. The fuzzy logic controller increments the machine flux by on-line search to improve the generator efficiency in case of light load. The speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power The generator reference speed is adjusted according to the optimum tip-speed ratio. The complete control system has been developed by simulation study.

  • PDF

Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

  • Ali, Esam H.;Hashem, Mohamed
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.135-144
    • /
    • 2007
  • The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees, was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum bio-mass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn, Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature $20^{\circ}C$ in case of S. delica while it was $25^{\circ}C$ for T. viride. Incubation of T. viride at higher temperatures ($30^{\circ}C\;and\;35^{\circ}C$) enhanced the removal efficiency of Pb and Cd than low temperatures ($15^{\circ}C\;and\;20^{\circ}C$) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals.

Efficient Utilisation of Credit by the Farmer - Borrowers in Chittoor District of Andhra Pradesh, India - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The present study has aimed at analyzing the technical and scale efficiencies of credit utilization by the farmer-borrowers in Chittoor district of Andhra Pradesh, India. DEA approach was followed to analyze the credit utilization efficiency and to analyze the factors influencing the credit utilization efficiency, log-linear regression analysis was attempted. DEA analysis revealed that, the number of farmers operating at CRS are more in number in marginal farms (40%) followed by other (35%) and small (17.5%) farms. Regarding the number of farmers operating at VRS, small farmers dominate the scenario with 72.5 per cent followed by other (67.5%) and marginal (42.5%) farmers. With reference to scale efficiency, marginal farmers are in majority (52.5%) followed by other (47.5%) and small (25%) farmers. At the pooled level, 26.7 per cent of the farmers are being operated at CRS, 63 per cent at VRS and 32.5 per cent of the farmers are either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Nearly 58, 15 and 28 percents of the farmers in the marginal farms category were found operating in the region of increasing, decreasing and constant returns respectively. Compared to marginal farmers category, there are less number of farmers operating at CRS both in small farmers category (15%) and other farmers category (22.5%). At the pooled level, only 5 per cent of the farmers are operating at DRS, majority of the farmers (73%) are operating at IRS and only 22 per cent of the farmers are operating at CRS indicating efficient utilization of credit. The log-linear regression model fitted to analyze the major determinants of credit utilization (technical) efficiency of farmer-borrowers revealed that, the three variables viz., cost of cultivation and family expenditure (both negatively influencing at 1% significant level) and family income (positively influencing at 1% significant level) are the major determinants of credit utilization efficiency across all the selected farmers categories and at pooled level. The analysis further indicate that, escalation in the cost of cultivation of crop enterprises in the region, rise in family expenditure and prior indebtedness of the farmers are showing adverse influence on the credit utilization efficiency of the farmer-borrowers.