• Title/Summary/Keyword: Optimum content

Search Result 2,704, Processing Time 0.033 seconds

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF

A Study on the Prediction of Maximum Dry Density and Optimum Moisture Content in Soil Compaction (흙의 다짐에 있어서 최대건조밀도(最大乾燥密度)와 최적함수비(最適含水比)의 추정(推定)에 대(對)하여)

  • Kang, Yea-Mook;Cho, Seung-Seup;Kim, Jae-Young
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1976
  • In order to obtain the prediction of the maximum dry density and the optimum moisture content of soil without soil moisture test, compaction test results from 157 different places either under construction or already completed were analyzed. The analyzed results were as follow The relationship between the maximum dry density and the optimum moisture content of the soil showing a correlation coefficient of 0.96 indicated that there was a high correlation between them. From the above relationship we obtained the equation, ${\gamma}_{dmax.}={\frac{1}{0.4193+0.00937W_{opt.}}$ Equation between the optimum moisture content and the maximum wet density of the soil was $W_{opt.}={\frac{0.4193{\gamma}_{tmax.}}{0.937_{\gamma}_{tmax.}-0.01}$, and the values of the optimum moisture content being predicted with the maximum wet density of the soil showed a little difference between those and tested values. The values of the maximum dry density being predicted with the moisture content estimated by the maximum wet density of the soil were within the range of ${\pm}5%$ of its tested values. The relationship between the dry density and the void ratio showed a high correlation between them (${\gamma}=0.9706$). From the above relationship, we obtained the equation, ${\gamma}_{dmax.}={\frac{1}{0.3938+0.3426e}}$.

  • PDF

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Process Optimization Using Regression Analysis of Distillation Processes for the Recovery of Propylene Glycol Monomethyl Ether Acetate (PGMEA) Containing Waste Organic Solvent (폐액 중 프로필 글리콜 모노메틸 에테르 아세테이트(PGMEA) 회수하는 증류공정에서 회귀분석을 이용한 공정 최적화)

  • Choi, Yong-Seok;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.181-192
    • /
    • 2015
  • The aim of this study is to obtain optimum process condition for using two tower distribution to recycle the waste Propylene Glycol Monomethyl Ether Acetate (PGMEA) that is formed after washing LCD. The optimum process condition for the content of PGMEA, which is dependent variable, at 1st distillation was calculated according to Bottom temperature (BTM temperature), Reflux amount, Feed amount, Feed temperatures, and the optimum process conditions and optimum factors for the content of PGMEA at 2nd distillation according to Bottom temperature (BTM temperature), Reflux amount, Feed amount, Feed temperatures. At 1st distillation, Reflux amount, Feed amount, and Feed temperature are significant variables. However, it is found that the BTM temperature range is not significant in the range of process condition used in this study. The optimum process conditions are based on $5700{\ell}$ of Feed amount, $2500{\ell}$ of Reflux amount, $165^{\circ}C$ of BTM temperature, and $130^{\circ}C$ of Feed temperature. For the this condition, the predicted content of PGMEA was calculated as 92.12~94.62%. Significant factors at 2nd distillation are Reflux amount, Feed amount, and BTM temperature. Multicollinearity is between Reflux amount and BTM temperature. BTM was omitted in the multiple regression equation because there is a strong positive correlation between Reflux amount and BTM temperature. Base on $199^{\circ}C$ of BTM temperature, The optimum process conditions are based on $4275{\ell}$ of Feed amount, $6200{\ell}$ of Reflux amount and $130^{\circ}C$ of Feed temperature. In this condition, the predicted content of PGMEA was calculated as 99.0~99.5%.

The Study of Optimum Lime Content for Ground Improvement of Clayey Soils and Its Effects on Plasticity and Strength Characteristics (점성토 지반 개량을 위한 최적 생석회 첨가량 결정 및 이에 따른 소성 및 강도 특성 분석)

  • Goo, Jeong-Min;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • This study proposed optimum lime contents for clayey soils consisting of representative clay minerals, Kaolinite and Na-Bentonite, according to optimum lime content method (ASTM C 977-22) by means of ground improvement method of clayey soils. As geotechnical properties, the variations of atterberg limits and unconfined compressive strength were analyzed and Ca-ion and micro-structure along elapsed time were observed for lime-added clayey specimens. The test results show that optimum lime content method provides an appropriate methodology for ground improvement of clayey soils and the variation of $Ca^{2+}$ might be a good index to predict the rate of ground improvement for clayey soils with lime addition.

The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability) (화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로))

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

Monitoring of Chemical Changes in Explosively Puffed Ginsengvand the Optimization of Puffing Conditions

  • Yoon, Sung-Ran;Lee, Gee-Dong;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.59-67
    • /
    • 2010
  • Response surface methodology was used to predict the optimum conditions of explosive puffing process for ginseng. A central composite design was used to monitor the effect of moisture content and puffing pressure on dependent variables such as functional compounds (extract yield, crude saponin, acidic polysaccharide, and total phenolic content) and sensory properties. Correlation coefficients $(R^2)$ of models for crude saponin, acidic polysaccharide, and total phenolic content were 0.9176 (p<0.05), 0.9494 (p<0.05), and 0.9878 (p<0.001), respectively. Functional compounds increased with decreasing moisture content and increasing puffing pressure. Overall palatability was high at 15-20% moisture content and 98-294 kPa of puffing pressure. On the basis of superimposed contour maps for functional compounds and overall palatability of puffed ginseng, the optimum ranges of puffing conditions were 10-17% moisture content and 294-392 kPa puffing pressure.

Compressive Strength Properties and Freezing and Thawing Resistance of CSG Materials (CSG 재료의 압축강도 특성 및 동결융해 저항성)

  • Yeon, Kyu-Seok;Kim, Young-Ik;Hyun, Sang-Hoon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the unconfined compressive strength properties and freezing and thawing resistance of CSG materials with unit cement content. The three types of CSG-80, CSG-100 and CSG-120 with cement content were designed to evaluate the optimum water content, dry density, strength, stress-strain, micro structure and durability factor. As the results, the optimum water content ratio with cement content showed almost similar tendency, and the unconfined compressive strength and dry density increased as cement content increases. The strength ratio of 7 days for 28 days were in the range of 55~61 % and the strain ratio in stress-strain curve were in the range of 0.8~1.6 % nearby maximum strength in 28 days. It is expected that this study will contribute to increasing application of CSG method as well as to increasing the utilizing of CSG materials as a environmentally friendly CSG method.