• Title/Summary/Keyword: Optimum content

Search Result 2,706, Processing Time 0.031 seconds

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

A Study of Evaluation for Optimum Content and Bond Strength Properties of Bituminous Materials applied for preventing Separation of Asphalt Pavement Layers (아스팔트 포장층 분리억제용 역청재료의 부착성능 및 최적함량 평가에 대한 연구)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.137-143
    • /
    • 2016
  • OBJECTIVES : Bituminous materials, such as tack coat, are utilized between pavement layers for improving the bond strength in pavement construction sites. The standards regarding the application of bituminous material are not clearly presented in the Korean construction guideline without RS(C)-4. Hence, the objective of this study is to determine the optimum content of bituminous materials by analyzing interlayer shear strength (ISS) from the direct shear tester, which was developed in this research. The shear strength of tack coat was defined with the sort of bituminous materials. METHODS : The mixtures for the shear test were made using marshall mix design. The specimens were vertically and horizontally separated for the direct shear test. The separated specimens were bonded using bituminous material. The objectives of the experiment are to determine the performance of bond and shear properties resulting from slippage, rutting, shovel, and corrugation of asphalt pavements. A machine based on the Louisiana interlayer shear strength tester (LISST) of NCHRP Report-712 was developed to determine the ISS. The applied types of tack coat were RS(C)-4, AP-3, QRS-4, and BD-coat with contents of $0.3{\ell}/m^2$, $0.45{\ell}/m^2$, $0.6{\ell}/m^2$, and $0.8{\ell}/m^2$, respectively. RESULTS : Table 2 gives the results of the direct shear test using the developed shear machine. The BD-coat type indicated the highest average ISS value compared to the others. Between the surface and binder course, optimum tack coat application rates for AP-3, RS(C)-4, QRS-4, and BD-Coat were $0.6{\ell}/m^2$, $0.3{\ell}/m^2$, $0.6{\ell}/m^2$, and $0.45{\ell}/m^2$, respectively. These optimum contents were determined using the ISS value. CONCLUSIONS : The ISS values of AP-3, RS(C)-4, and QRS-4 showed similar tendencies when ISS increased in the range $0.3{\sim}0.6{\ell}/m^2$, while ISS decreased when the applied rate exceeded $0.6{\ell}/m^2$. Similarly, the highest ISS value of the BD-coat was observed when the applied rate was $0.45{\ell}/m^2$. However, shear strength was similar to the maximum value of ISS when the tack-coat application rate of BD-Coat exceeded $0.45{\ell}/m^2$.

Varietal Differences of Rice in Yield Response of Nitrogen Fertilizer (수도(水稻)에 대(對)한 질소시비반응(窒素施肥反應)의 품종간(品種間) 차이(差異))

  • Lee, Choon-Soo;Shin, Cheol-Woo;Kwak, Han-Kang;Lee, Kang-Man;Ahn, Yoon-Soo;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 1985
  • An attempt to evaluate yield response and efficiency of N fertilizer was made with the data obtained from various rice cultivars during 1978 to 1983. 1. The optimum rate of N fertilizer for maximum yield varied from 13.9 to 28.0 kg/10a with rice varieties. 2. The cultivars with high optimum N levels were high in N content (straw) and N uptake (straw+grain) at harvesting stage, but low in production efficiency and use efficiency of N. 3. The yield increment at the optimum rates of N in comparison with no N application among the rice varieties were 29-101%. 4. The cultivars with hish yield increment at optimum rate were high in the N content (straw+grain), and production efficiency at harvesting stage.

  • PDF

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

Monitoring on the Tea with Steaming and Drying Process of Germinated Buckwheat (메밀순의 증숙 및 건조에 따른 침출차 특성 모니터링)

  • 이기동;윤성란;김정옥;허상선;서권일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.212-217
    • /
    • 2004
  • To make the germinated buckwheat tea, soluble solid contents, total flavonoid contents and organoleptic properties were investigated under various steaming time and drying temperature. The optimum condition of soluble solid contents were 6.93 min of steaming time and 73.59$^{\circ}C$ of drying temperature. Total flavonoid contents were maximum under the condition of 5.22 min of steaming time and 79.05$^{\circ}C$ of drying temperature. The optimum condition of overall palatability was 6.00 min of steaming time and 77.33$^{\circ}C$ of drying temperature. The optimum ranges of soluble solid contents, total flavonoid contents and overall palatability of the tea were 5.4∼7.0 min of steaming time and 75∼8$0^{\circ}C$ of drying temperature. The values expected in the optimum ranges were also similar to the experimental values.

Studies on the Processing of Rapid- and Low Salt-Fermented Liquefaction of Sardine (Sardinops melanoslicta)(I) -Changes in Quility during Preheating of Chopped Whole Sardine and Optimum Conditions of Crude Enzyme Activity in Viscera- (저식염 속성 정어리 발효 액화물 가공에 관한 연구(I) -효소의 최적활성조건 및 마쇄육 예열처리중의 품질변화-)

  • Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.5
    • /
    • pp.455-460
    • /
    • 1999
  • In order to establish the processing condition of salt-fermented liquefaction of sardine (Sardinops melanoslicta), effect of temperature, pH value, and concentration of salinity on crude enzyme activity of sardine viscera were investigated. The optimum temperature range of crude enzyme activity in sardine viscera was $45{\sim}50^{\circ}C$ and the optimum pH value of it was 9.8. According to the concentration of salinity increased the crude enzyme activity in sardine viscera decreased. The relationship between concentration of salinity (X) and the crude enzyme activity (Y) in sardine viscera is shown as follows; Y=-0.01363X+0.7676 (r=-0.88). For the purpose of processing conditions of rapid- and low salt-fermented liquefaction of sardine, changes of viable cell count, histamine content, and volatile basic nitrogen (VBN) in the chopped whole sardine with 8% NaCl during preheating process at $40^{\circ},\;45^{\circ}$ and $50^{\circ}C$ for 48 hrs were analyzed. During preheating, initial viable cell counts of chopped whole sardine were $10^{4-7}/g$, but they decreased $10^{1-5}/g$ after 48 hrs. Histamine contents during preheating process at $40^{\circ}\;and\;45^{\circ}C$ were gradually increased, whereas at $50^{\circ}C$ were almost the same level after 48 hrs. VBN contents were continuously increased during preheating, but preheating at $50^{\circ}C$ samples were lower level than that of $40^{\circ}\;and\;45^{\circ}C$ ones. For the purpose to accelerate the fermentation and liquefaction of chopped whole sardine, preheating at optimum temperature of crude enzyme activity for 48 hrs was useful processing method and the contents of viable cell count, histamine, and VBN were safety level for food sanitation.

  • PDF

Studies on the Hydrolysis of Milk Fat by Microbial Lipases (미생물에서 추출된 Lipase의 유지방 분해)

  • Park, Jong-Hack;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-64
    • /
    • 1985
  • To utilize microbial lipases for hydrolysis of milk fat, optimum reaction conditions and characteristics of enzymatic reactions of lipases originated from Rhizopus delemar, Mucor sp., and Candida cylindracea were investigated. Optimum pH and temperature were pH 5.6 and $45^{\circ}C$ for Rhizopus delemar lipase, pH7.5 and $35^{\circ}C$ for Mucor sp. lipase, and pH7.5 and $35^{\circ}C$ for Candida cylindracea lipase. Optimum lipase concentration and optimum substrate concentration were $600{\sim}800\;units/ml$ and 20% milk fat, regardless of their origin. Km values were 6.06% milk fat for Rhizopus delemar lipase, 7.69% for Mucor sp. lipase and 7.99% for Candida cylindracea lipase. Rate of lipid hydrolysis was Rhizopus delemar lipase>Mucor sp. lipase>Candida cylindracea lipase. As the reaction time was extended, liberation of short chain fatty acids was increased. After 8 hours reaction, capric acid content significantly increased with Candida cylindracea lipase, palmitic acid with Mucor sp. lipase and butyric acid with Rhizopus delemar lipase.

  • PDF

Study on the Optimum Harvest Timing for Different Operational Systems of Rice (벼의 수확작업 체계별 수확정기 결정에 관한 연구)

  • 이종호;강화석;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.88-99
    • /
    • 1978
  • In this study, rice harvesting systems suitable to Korean situations and the optimum timing of these systems were determined, respectively, based on experimentally determined factors such as filed yield and the milling quantity and quality measured at various levels of the grain moisture content at harvest. Rice varieties used for the experiment were the AKIBARE (Japonica-type) and the SUWEON 251 (high yielding TONGIL sister-line variety), The harvesting systems studied by the experimental work of this study were traditional system with both the wet material and dry-material threshing system by use of binder with both the dry-material and wet-material threshings, and system by use of combine. Grain samples were taken from final products of the paddy rice harvested from the experiment a fields for each system to measure the recovery rates of the milled rice. The results may be summarized as follows; 1. The milling recovery rate of the AKIBARE variety had highest value within the range of the grain moisture at harvest, showing from 21 to 26 percent. The head-rice recovery for the same variety was a little greater in the wet-material threshing than in the dry-material threshing , higher values of which , were 20 to 25 percent , seen within the range of grain moisture at harvest regardless of the harvesting systems tested. 2. The milling recovery of the SUWEON 251 , when tested for different harvesting systems and harvesting grain moisture, did not show a statistically significant different. In contrast , head-rice recovery for the systems operated by the wet-material threshing was much greater than that by the -material threshing. The difference of the recoveries between these systems range from 2.6 to 4.7 percent. 3. An assessment of the optimum period of -harvest timing for each of the harve\ulcornersting systems tested were made bJ.sed on (a) the maximum total milled-rise yield and (b) the percentage reduction in the total milled-rice yield due to untimely harvest operations. The optimum period determined are: 23-19% for the ATD, AC, STD, SBW, STW systems, 25-21% for the ATW ani ABW systems, and 27-18% for the ABD, SBD, and SC systems, respectively.

  • PDF

Enhancement of Carbon Dioxide Fixation by Alteration of Illumination during Chlorella Vulgaris-Buitenzorg's Growth

  • Wijanarko Anondho;Dianursanti Dianursanti;Gozan Misri;Andika Sang Made Krisna;Widiastuti Paramita;Hermansyah Heri;Witarto Arief Budi;Asami Kazuhiro;Soemantojo Roekmijati Widaningroem;Ohtaguchi Kazuhisa;Koo Song-Seung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.484-488
    • /
    • 2006
  • Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the $CO_{2}-fixation\;(q_CO_{2}$ capability of Chlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of $CO_{2}$ fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum $CO_{2}-fixation-based$ curve produced a $q_CO_{2}$ of $12.8\;h^{-1}$. Meanwhile, alteration of light intensity with a growth-based curve only produced a $q_CO_{2}$ of $6.68\;h^{-1}$. Increases in light intensity based on a curve of optimum $CO_{2}-fixation$ produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of $29^{\circ}C$ with a superficial gas velocity of $2.4\;m/h(U_{G}$. Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by a Phillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.