• Title/Summary/Keyword: Optimum content

Search Result 2,704, Processing Time 0.032 seconds

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Geotechnical Properties of Soil-Bentonite Mixtures (흙-벤토나이트 혼합물의 지반공학적 특성)

  • 채교익;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

Effective Utilization of Hemp Fiber for Pulp and Papermaking(II) - Characteristics of hemp-wood paper made of hemp fiber cooked at low temperature - (펄프.제지용 원료로서의 삼 섬유 이용에 관한 연구(제2보) -저온 펄프화 삼 섬유의 수초지 특성-)

  • Lee, Myoung-Ku;Kim, Ji-Seop;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • Hemp bast pulp cooked at temperature below $100^{\circ}C$ followed by defibration by the knife and the valley beater, respectively was mixed with softwood pulp varying the amount of hemp pulp in order to find the optimum condition for making hemp-wood paper. Both the knife and the valley beaters contributed to the dispersion of pulp fiber well. Lots of shives were found when the knife beater was applied exclusively, but the fibers were dispersed well when freeness dropped to 600 mL CSF and 500 mL CSF by the valley beater. Air resistance decreased drastically below 500 mL CSF where rapid disrupture of pulp fiber occurred. As the values for freeness and hemp fiber content increased, so did roughness and bulk. It was apparent that the tear strength of hemp-wood paper was on the rise drastically as hemp fiber content increased. Nevertheless the optimum hemp fiber content of hemp-wood paper would be 20% considering the decrease in both tensile and burst strengths as well as sheet formation.

Effect of Growth Conditions on Saponin Content and Ginsenoside Pattern of Panax ginseng

  • Lee, Mee-Hyoung;Park, Hoon;Lee, Chong-Hwa
    • Proceedings of the Ginseng society Conference
    • /
    • 1987.06a
    • /
    • pp.89-107
    • /
    • 1987
  • For the elucidation of significance of saponin as quality criterion of ginseng ginsenoside content(GC) and ginsenoside pattern similarity(GPS) by simple correlation were investigated in relation to red ginseng quality factors, age, plant part, harvest season, mineral nutrition, soil physical characteristics, growth light and temperature, shading material, growth location, physiological disease and crop stand through survey of ginseng plantstions, field experiments, water culture and phytotron experiments. Effect of tissue culture was also reviewed. GC was negatively correlated with good quality of red ·ginseng and positively with bad quality. Age did not show any consistency with GC but GPS was less with the increase of age difference. GPS was less or not significant between taproot that is lowest in GC and epidermis highest, and significant between leaf and taproot. Harvest season marked with the lowest GC and Pattern was also different. Nutrient imbalance, the increase of hazardous soil nutrient and physical condition to growth increased GC, but GPS was little different. The higher the growth lights intensity and temperature the higher the GC but GPS was little changed. Root rust increased GC, but root scab decreased it. Sponge-like and inside cavity phenomena increased GC. Ginsenoside pattern of cultured tissues and rootlet showed great variation. These results strongly indicate that there are optimum saponin content and ginsenoside pattern and that these are accomplished under the optimum growth condition.

  • PDF

Water Physiology of Panax ginseng Charcteristics of reproductit.e organs and precipitation rate and humidity of shade system. (인삼의 수분생리 II. 생식기관의 특성과 일복의 누수량 및 습도)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.84-99
    • /
    • 1982
  • Water content and its seasonal change in reprodltctive organs were reviewed in relation to cultivation practice s. Precipitati on and humidity under shade roof were reviewed in relation to shading ,jystem and environmental factors. High water content of reproductive organs suggests vulnerability to water stress during reproductive growth stage. Watering during dehisconce treat menu seems to keep optimum temperature but cnoventional practice seems to be too often In watering. Information effe on water physiology of seeds is too rare to develop seed storing method and ctive seed use. Dehiscent mechanism was considered in terms of water absorption of embryo. Precipitation rate of conventional shade roof reaclled to 38% and at line level 50% and varied with shade patterns. Precipitation rate under shade has been investigated for itself but should be investigated in relation to light intensity and soil moisture content Relative humidity under shade depends mainly on air humidity and soil moisture, considerably on shade materials and lithe on pole height, bed width or plant density. Since relative humidity was lower in afternoon it was often less than 50% even in summer with high temperature suggesting possible disorder of phi biological function especially in photosynthesis. More information was needed on optimum humidity for productive physiological function of leaf.

  • PDF

The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures (아스팔트 혼합물의 물리적 특성을 이용한 간접인장강도의 특성 분석)

  • Lee, Moon Sup
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • PURPOSES : This study was performed to evaluate the possibility of Indirect Tensile Strength (ITS) as a testing method that can predict cracking on pavement. METHODS : Three asphalt binders and one kind of aggregate were used in this study, and all asphalt mixtures were produced using Gyratory Compactor followed asphalt mix design. The ITS test was performed for the mixture which are artificially short-term aged using the oven. The ITS properties were analyzed by air void, compaction temperature, asphalt content, and asphalt binder. RESULTS : The results of this study indicated that (1) the compaction temperature did not show relationship with the ITS test; (2) there was no specific trend between the asphalt content and the ITS test; (3) the ITS could reveal the property of kinds of asphalt binders; (4) the asphalt mixture that were produced at optimum temperature suggested by manufacturer did not exhibit optimum result for all asphalt binder. CONCLUSIONS : The possibility of ITS was confirmed from this study for replacement of the Marshall Stability method. However, it needs to perform in further studies of aggregate and compaction property to suggest a new ITS standard value.

Concentration of Fresh Gel from Aloe vera L. by Using Ultrafiltration Process (한외여과 공정에 의한 알로에 베라 겔 농축)

  • Baek, Jin-Hong;Kim, Sung-A;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • The concentration of fresh gel from Aloe vera L. by using ulfrafiltration (UF) process was investigated and analyzed. The two membranes (organic and ceramic) with different molecular weight cut-off (MWCO) and modules (flat sheet and tubular) was used. Under optimum operation conditions, ceramic (zirconium dioxide) tubular membrane with MWCO of 50 kDa resulted in higher flux, less fouling, more turbid, higher total solid, higher polysaccharide and less aloin content. Optimum operation conditions were transmembrane pressure of 1.0 bar, feed velocity of 240 L/hr and temperature of $23^{\circ}C$. Volume concentration factor of aloe gel was 3.13 at permeate flux of $51.1\;L/m^2{\cdot}hr$ after processing time of 1.66 hr. Aloin in fresh aloe gel by UF process was effectively removed as permeate and bioactive polysaccharide content was 2.1 times higher than that of fresh aloe gel. These results allowed a very good level of concentration degree and polysaccharide content. Thus, ultrafiltration process of this study was suitable for the concentration of fresh aloe gel though the aloe concentrate showed both the viscosity decrease and partially separation of liquid layer during storage at $4^{\circ}C$.