• 제목/요약/키워드: Optimum coating conditions

검색결과 151건 처리시간 0.024초

공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구 (Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating)

  • 강용진;김도현;류호준;김종국;장영준
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성 (Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution)

  • 남기우;김정량;최창민
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).

최적 고속화염용사법으로 제조된 Diamalloy4006 코팅의 내마모 특성 (Wear Property of Diamalloy-4006 Coating Prepared by OCP HVOF Thermal Spraying)

  • 주윤곤;윤재홍;정연길;이재현
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.442-449
    • /
    • 2015
  • The effects of coating parameters were investigated in wear resistance coatings of Diamalloy-406 on Inconel 718 to obtain an optimum coating condition by high velocity oxy-fuel spraying. The coating parameters, the flow rates of source gases (hydrogen and oxygen), the powder feed rate, and the spray distance, were designed by the Taguchi method. The optimal conditions were determined: oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min, and spray distance 7 inch. Friction coefficients of the coating and the substrate decreased with an increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. The friction coefficient of Diamalloy-4006 coating decreased as the sliding surface temperature increased from $0.43{\pm}0.01$ at $25^{\circ}C$ to $0.29{\pm}0.01$ at $450^{\circ}C$. The wear trace and wear depth of the coating were smaller than the substrate at all temperatures tested. The relationship between spray parameters and wear resistance was discussed extensively, based on the measured roughness, hardness, and porosity in each coating.

Microencapsulation of Caramel Flavor and Properties of Ready-to-drink Milk Beverages Supplemented with Coffee Containing These Microcapsules

  • Kim, Gur-Yoo;Lee, Jaehak;Lim, Seungtae;Kang, Hyojin;Ahn, Sung-Il;Jhoo, Jin-Woo;Ra, Chang-Six
    • 한국축산식품학회지
    • /
    • 제39권5호
    • /
    • pp.780-791
    • /
    • 2019
  • This study aimed to extend the retention of flavor in coffee-containing milk beverage by microencapsulation. The core material was caramel flavor, and the primary and secondary coating materials were medium-chain triglyceride and maltodextrin, respectively. Polyglycerol polyricinoleate was used as the primary emulsifier, and the secondary emulsifier was polyoxyethylene sorbitan monolaurate. Response surface methodology was employed to determine optimum microencapsulation conditions, and headspace solid-phase microextraction was used to detect the caramel flavor during storage. The microencapsulation yield of the caramel flavor increased as the ratio of primary to secondary coating material increased. The optimum ratio of core to primary coating material for the water-in-oil (W/O) phase was 1:9, and that of the W/O phase to the secondary coating material was also 1:9. Microencapsulation yield was observed to be approximately 93.43%. In case of in vitro release behavior, the release rate of the capsules in the simulated gastric environment was feeble; however, the release rate in the simulated intestinal environment rapidly increased within 30 min, and nearly 70% of the core material was released within 120 min. The caramel flavor-supplemented beverage sample exhibited an exponential degradation in its flavor components. However, microcapsules containing flavor samples showed sustained flavor release compared to caramel flavor-filled samples under higher storage temperatures. In conclusion, the addition of coffee flavor microcapsules to coffee-containing milk beverages effectively extended the retention of the coffee flavor during the storage period.

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

메틸셀룰로오스에 의한 탈랍지의 강도보강처리 - 메틸셀룰오스 점도 및 도포율의 영향 - (Strengthening of De-waxed Paper by Methyl Cellulose (MC) and Its Preservability - Effect of Viscosity and Coating Ratio of MC -)

  • 최경화;정혜영;조병욱
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.130-138
    • /
    • 2015
  • This study was conducted to investigate the effect of the strengthening treatment of methyl cellulose (MC) on properties and aging characteristics of the dewaxed papers during humid heating aging. Beeswax-treated Hanji was dewaxed by the supercritical fluid extraction method, and subsequently the strengthening treatment was performed with MCs having three different viscosities. MC was first applied by dipping a dewaxed paper into a MC solution whose concentration was controlled from 0.5% to 1.5%. After the strengthened papers were artificially aged at $80^{\circ}C$ and 65% RH, the changes in optical and mechanical properties of the samples were evaluated. The results show that viscosity and especially pick-up of MC influenced the strengthening efficiency and aging characteristics of dewaxed paper. Strength was increased with the MC coating weight; in addition, strengthening with MC improved preservability of the dewaxed paper. The optimum conditions for the strengthening with MC was found to be the coating ratio of 4% with 1500 cP MC.

전기수력학적 힘이 분무특성에 미치는 영향 (Effects of the Electrohydrodynamic Forces on Characteristics of Spray)

  • 이종호;권순도;김상헌;문수연;이충원
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.44-51
    • /
    • 2001
  • The distributions of the SMD and behavior of 2% $NH_4H_2PO_4$ spray discharged from a fan-spray twin fluid type nozzle are measured and observed. The spray characteristics, according to the variation in the applied voltages, are demonstrated using the PMAS (particle Motion Analysis System) and the CCD camera, respectively. The preliminary experiments are executed to select an optimum condition for solidifying a galvanized coating layer in the uncharged condition before carrying out the main experiments. The liquid and air pressure of $0.07kgf/cm^2\;and\;0.15kgf/cm^2$ can be considered the optimum conditions to use in the main experiment. As the applied voltage increases, the frequent range of relatively large droplets diminishes. Thus, the distributions of drop diameter in the charged spray are more uniform than these in the uncharged condition. This is explained by recognizing that repulsive forces among droplets with the charges of the same sign cause them to be uniform.

  • PDF

THE EFFECTS OF ADDITIVES IN NICKEL AND COPPER ELECTROPLATING FOR MICROSTRUCTURE FABRICATION

  • Kim, Go-Eun;Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.214-218
    • /
    • 1999
  • The effect of additives in nickel and copper electroplating were investigated for MEMS applications. Saccharin and gelatin were used as additives in nickel and copper electroplating bath respectively. The morphology and surface hardness of electroplated coating were investigated with additive concentration. Microstructures were fabricated with optimum conditions.

  • PDF

현무암 재봉사의 연속식 테프론 코팅 공정 (Continuous PTFE Coating Process on Basalt Sewing Thread)

  • 이수
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.183-189
    • /
    • 2014
  • 내화성 및 내화학성이 우수한 현무암사의 표면에 회분식 방법에 의한 테프론 코팅 연구의 결과를 토대로 연속식 코팅 공정 인자를 도출하기 위한 연구를 수행하였다. 현무암사를 7,5 wt% 트리에톡시트리플루오로실란(TMTFPS)으로 연속적으로 전처리 한 후, 침투제로 0.25 wt% bis(2-ethylhexyl)sulfo succinate (DOS-Na)가 함유된 20 wt% 테프론 수분산액으로 딥 코팅한 후 2 m의 $120^{\circ}C$ 건조 챔버에서 12 m/mim의 속도로 건조한 후 2 m의 $380^{\circ}C$ 소성 챔버에서 40초간 소성하여 최종 $3.4g_f/D$의 인장 강도와 $2.3g_f/D$의 루프강도를 가지는 테프론이 코팅된 고내열 재봉사용 현무암사를 제조하였다.

심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조 (Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode)

  • 김재현;양혁주;조길수
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.