• Title/Summary/Keyword: Optimum angle

Search Result 825, Processing Time 0.029 seconds

A Study on the Thermal Performance of a Z-shaped Heat Pipe (Z자 형상을 갖는 히트파이프에 대한 열성능 연구)

  • Park, S.Y.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.741-745
    • /
    • 2001
  • The necessity of a Z-shape heat pipe may occur in a special application such as a cooling module for an electronic equipment having a limited accessible space. Either of the two end part works as evaporator or condenser and the length of the middle part is 200mm. The heat pipe was made of 3/8 inch copper tube having 60 spiral groove with screw angle of 10 degrees. Water and acetone were used as working fluids. The fill charge ratio of the working fluid was varied for different values of thermal loads. The thermal resistance was calculated based on the temperature measurements along the heat pipe axis. The maximum thermal loads were 80W for water and 100W for acetone heat pipe. The optimum fill charge ratio was identified through a series of experiments.

  • PDF

Evaluation of Optimized Ring Specimen Shape for the Hoop Behavior Test of Nuclear Fuel Clad Tube (핵연료 피복관의 후우프 거동시험을 위한 시편의 최적형상 평가)

  • 서기석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.171-178
    • /
    • 2000
  • In order to evaluate the tensile behaviors of hoop direction for the nuclear fuel cladding tubes the shapes of specimen and jig fixtures for the ring test are decided with various conditions under the elastic-large plastic deformations. The axial displacement of the jig cylinders is converted to the circumferential direction elongations of specimen. The stress distributions on specimen are depended on the radii and locations of specimen and jig size and central angle. Therefore we calculated the stress distributions and decided the optimum shapes to get the uniform stress in the area of specimen gage length. Form the analysis the stress distributions in gate area are reviewed with the radii and location of specimen notch and the central angle of jig cylinder,. The optimum shapes of specimen and jig are proposed to the clad tube having 10.62 mm in diameter and 0.63mm in thickness for 16x16 PWR nuclear fuel assembly.

  • PDF

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Influence of CBN Tool Geometry on Cutting Characteristics of High Hardened Steel (CBN 공구의 형상이 고경도강의 절삭특성에 미치는 영향)

  • 문상돈;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and optimum tool geometry on milling of hardened STD11 steel. In the finish process office milling of high hardened STD11 steel by CBN tool, the optimum tool shape is suggested, which can minimize the tool fracture and chipping by impact. It is measured that cutting farce, tool wear and surface roughness generated during single-insert face milling using various geometric CBN tools. It has been found that the optimal chamfer angle of CBN tool is about -$25^{\circ}C$ and the suitable chandler width is 0.2mm. The nose radius of tool is the most excellent at 1.2mm in the viewpoint of tool wear and surface roughness.

  • PDF

Performance Prediction of the Horizontal Axis wind Turbine in Arbitrary Wind Direction (임의 풍향에 있는 수평축 풍력터빈의 성능예측)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.255-265
    • /
    • 1996
  • Up to the present the study on the performance prediction of HAWT was performed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glauert method with the experimental results, it was proved that our method was a very efficient method. And on the basis of the reliability of this method we considered the effect of all the design parameters and presented the optimum blade geometry and the optimum operating condition to gain the best performance curve.

Optimum Angle between Pump Beam and Probe Beam in the Differential-Velocity-Selective Saturation Absorption Spectroscopy (차동속도선택 포화흡수분광법에서 펌프광과 조사광의 최적 각도)

  • Cho, Chang-Ho;Park, Jong-Dae
    • The Journal of Natural Sciences
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2002
  • Exponential decrease of saturation absorption signal was reported in pump beam spacially keeping off from probe beam. Optimum angle between pump beam and probe beam in the differential-velocity-selective saturation absorption spectroscopy was computed theoretically, $1.33^{\circ}$ in cesium atoms and $1.08^{\circ}$ in Rb 87 atoms, and was good agreement with the experimental results.

  • PDF

Optimum Installation Angle of Solar Collectors according to Region and Energy Consumption Patterns (지역 및 에너지소비패턴에 따른 태양열 집열기의 최적설치각 해석)

  • Jun, Yong-Joon;Park, Kyung-Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • Solar energy depends on the altitude and azimuth of the sun, and the amount of energy collected on the slope depends on the latitude of the area being installed. However, since most solar heating systems are fixed to the ground, it is necessary to analyze the optimal installation angle from the early design stage. However, problems arise when energy consumption is not considered together because heating systems are not used in the summer In this study, the optimum installation angles of the solar collectors according to the latitude of the installation area are not simply determined by the amount of energy collected, but because the system is overheated due to climate change or energy usage patterns, And the amount of additional energy input.

Optimum Design of Vaporizer Fin with Liquefied Natural Gas by Numerical Analysis

  • Jeong Hyo-Min;Chung Han-Shik;Lee Sang-Chul;Kong Tae-Woo;Yi Chung-Seub
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.545-553
    • /
    • 2006
  • Generally, the temperature drop under $0^{\circ}C$ on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins $(\Phi)$ and fin thickness $(TH_F)$. Numerical analysis results were presented through the correlations between the ice layer thickness $(TH_{ICE})$ on the vaporizer surface to the temperature distribution of inside vaporizer $(T_{IN})$, fin thickness $(TH_F)$, and angle between two fins $(\Phi)$. Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper.

A Study on the Establishment of Optimum Design Conditions and Economic Evaluation for Rot Water Heating Solar Energy System (태양열(太陽熱) 급탕(給湯)시스템의 최적설계(最適設計) 조건(條件)의 설정(設定)과 경제성(經濟性) 평가(評價)에 관한 연구(硏究))

  • Lee, Young-Soo;Lee, Ki-Woo
    • Solar Energy
    • /
    • v.6 no.1
    • /
    • pp.47-59
    • /
    • 1986
  • This paper presents the establishment of optimum design conditions and economic evaluation for solar hot water system. The aim of this study is to present thermal performance of solar heating systems and to determine their performance as a function of collector size, storage capacity, tilting of collector and other factors. By analyzing its performance under the various conditions, optimum design of solar heating system can be obtained. System performance are obtained monthly and yearly basis respectively. At the same time the economics of various systems are evaluated. For the computer simulation Mokpo, Kangnung, Chupungnyong and Seoul are selected for particular installation places. As a result, the optimal design condition of solar heating system considering the following factors such as installation angle of collector, capacity of storage tank, collector size in each place can be obtained as follows; (1) Installation angle of collector Tilt = lattitude (2) Capacity of storage tank Solar domestic hot water system : $45\;1/m^2$ Multifamily solar domestic hot water system : $35\;1/m^2$ (3) Collector size i) Solar domestic hot water system Seoul & Chupyungyong area : $11.52\;m^2$ Mokpo area : $8.64\;m^2$ ii) Multifamily solar domestic hot water system Seoul, Chupyungyong & Mokpo area : $345.6\;m^2$ Kangnung area : $259.2\;m^2$

  • PDF

A Study on the Optimum Selection of Placing Photovoltaic Module In the Metropolitan City Using a TRNSYS (TRNSYS를 이용한 지역별 고정형 태양광모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.297-302
    • /
    • 2011
  • In this study, used Trnsys and will apply metropolitan city distinguishes, fixations and BIPV systems the photovoltaic module arrangement environment which receives solar radiation quantity plentifully from the case design process which and most the outcome value simulation did analyzed. The climate data uses each metropolitan city distinguishes 20 average weather data, With measured values of horizontal solar radiation. The error scope appeared with 0.1%~6.7%. Variable of module arrangement Azimuth and angle of inclination of module and comparison group Module on due south direction angle of inclination $45^{\circ}$ day time set with the yearly average solar radiation quantity which receives. The result When the case comparison group which arranges a solar storehouse module with optimum environment and comparing until the minimum 1.4% - maximum 10.9% the solar radiation quantity difference appears with the thing, metropolitan city distinguishes considers the case solar radiation quantity which will arrange a photovoltaic module and that must establish with optimum environment judges.

  • PDF