• Title/Summary/Keyword: Optimum Temperature

Search Result 6,366, Processing Time 0.035 seconds

Effect of Storage Temperature on the Dispersion Stability of O/W Nano-emulsions (O/W 나노에멀젼 분산안정성에 미치는 보관온도의 영향)

  • Lee, Ye-Eun;Yoo, In-Sang
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.385-391
    • /
    • 2014
  • In this study, the emulsion dispersion stability of optimizing storage temperature was investigated. The system was based on oil/water (O/W) emulsions. In order to evaluate the stability, mean diameter of droplet was measured as a function of temperature with various mixed hydrophilic lipophilic balance (HLB). In addition, the correlations between phase inversion temperature (PIT) and the optimum storage temperature were probed. In this system, majority of the smallest droplet was shown at temperature of $20^{\circ}C$ below PIT. Whether the temperature was increased or decreased from the optimum, size of the droplet increased. According to the mixed HLB, the particle size and optimum storage temperature were also affected. As the concentrations of surfactant were increased, the size of particle decreased with lower optimum temperature for storage. If the surfactant (4 wt%) were mixed with HLB, the optimum storage temperature was $21^{\circ}C$ for maintaining the size of smallest droplet at 108.3 nm in diameter. At above optimum condition, increased size of particle was observed approximately 4 % increases from 108.2 nm to 112.3 nm after 600 hours. The size of particle in emulsion was maintained stably without any considerable effect of Ostwald ripening phenomena at the optimum storage temperature with low polydispersity index.

An Experimental Study on the Shortest optimum time for Body Temperature measurement (체온측정에 필요한 최단적정시간규명을 위한 실험적 연구)

  • 홍여신;이선옥
    • Journal of Korean Academy of Nursing
    • /
    • v.5 no.2
    • /
    • pp.38-50
    • /
    • 1975
  • This study was conducted to find the shortest optimum time for taking oral temperature and axillary temperature, which does not affect reliability of body temperature. For this purpose, first, the time at which all the samples are reaching maximum temperature is identified Second, the mean maximum temperature is compared with the mean temperature of each consecutive measurement by T-test to find the time at which no significant changes in temperature occurs along time sequence. Third, optimum temperatures are set at points of -0.2℉, -0.4℉, -0.6℉, -0.8℉, -1.0℉, -1.2℉, -1.4℉, from maximum temperature. A point of time at which 90% of samples reach at optimum temperature is identified and defined as optimum time. The study sample, a total of 164 cases were divided into two groups according to their measured body temperature. The group with body temperature below 37 $^{\circ}C$(A group) and above 37$^{\circ}$1'C (B group) were compared on the time required to reach maximum temperature and optimum temperature. The results are as follow. 1. The time required for total sample to reach maximum temperature was 13 minutes in both groups by oral method, 15 minutes in A group and 13 minutes in B group by axillary method. Time required for 90 % of cases reach maximum temperature by oral method was 10 minutes in both group. By axillary method, 12 minutes in A group. (Ref: table 2) 2. Statistical analysis by means of T-test, the time which does not show a significant change by oral method were 12 minutes in A group and 11 minutes in B group, and by axillary method 14 minutes in A group and 11 minutes in B group. (Ref: table 5, 6.) 3. Where optimum temperature was defined as maximum temperature minus 0.2 ℉, optimum time was found 8 minutes in both groups by oral method, and 11 minutes in A group and 9 minutes in B group by axillary method 4. Where optimum temperature was defined as maximum temperature minus 0.4 ℉, optimum time was found 7 minutes in A group and 6 minutes in B group by oral method, and 9 minutes in A group and 7 minutes in B group by axillary method 5. Where optimum temperature was defined as maximum temperature minus 0.8 ℉, optimum time was found 6 minutes in A group and 6 minutes in B group by axillary method (Ref: table 7, 8, 9, 10) 6. The commonly practiced temperature taking time, 3 minutes in oral method and 5 minutes in axillary method can be accepted as pertinent when physiological variation of body temperature at the mean level of -1, 2 ℉ is accepted. 7. The difference in time required to resister maximum temperature was compared between the group with body temperature below 37$^{\circ}C$ and above 37$^{\circ}$1'C, and found no significant difference in oral mettled and 1 - 4 minute difference in axillary method with shorter time requirement in feverish group.

  • PDF

A Study on the Optimum Design Parameters of the Thermostat for Coolant Temperature Control of an Automotive Engine (자동차용 기관의 냉각수 온도조절을 위한 서머스탯의 최적설계 변수설정에 관한 연구)

  • 박경석;신진식;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • It is widely recognized that exhaust emissions, fuel economy and engine torque are affected by engine temperature, and logic would suggest that a cooling system offering a better compromise of engine temperature would improve both overall engine performance and economy. Author measured coolant temperature of some parts and flow rate which are necessary to heat transfer in a engine. And Author determined parameters necessary for the optimum design of a thermostat to keep the best engine performance ; determined the optimum operating temperature of electric cooling fan. A summary of this study is followed. 1. Study of the effects of cooling condition to combustion character in a engine. 2. Analyze of heat transfer surrounding engine cylinders. 3. Study of the effects of cooling character to engine heat rejection, determination of the optimum collant temperature for keeping the optimum engine performance and determination of the optimum design of a thermostat for keeping that temperature.

  • PDF

Study of a Temperature Control Method of Vaccine Storage-Box with PIC (PIC를 이용한 백신 보관고의 온도제어 기법에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Yang, Gi-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.145-149
    • /
    • 2001
  • This paper did so that may can establish optimum temperature according to kind of vaccine and digitalized various action situations using PIC 16C74A-04A/SP. Also, PID Algorithm Controller designed to maintain optimum temperature using PIC. Begin to operating system after temperature setting, reached in optimum storage temperature within 30 minutes.

  • PDF

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

Oplimum Design Conditions for a Basic Refrigeration Cycle (냉동사이클의 최적 설계조건)

  • Cho, Sung-Whan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.356-361
    • /
    • 1986
  • An optimum design condition for a basic refrigeration cycle is defined as the condition which minimizes the total cost of heat exchanges (condenser and evaporator) and compressor for the refrigeration effect. Thermodynamic properties of ammonia (R717) are approximated by rational functions in order to obtain the optimum condition for a basic refrigeration cycle. Optimum condition depends on the heat capacity rates (mass flow rate times specific heat) of cooling water and brine used in condenser and evaporator. The difference between the cooling water temperature and condensation temperature at the optimum condition increases as the heat capacity rates and the coat of heat exchangers relative to the cost of compressor increase. Numerical examples of optimum conditions are obtained when the condensation temperature is $30^{\circ}C$ and the evaporator temperature is $-10^{\circ}C$.

  • PDF

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

A Enzymatical Characteristics Study of Kyenegum (계내금(鷄內金)의 효소학적 특성 연구)

  • Kim, Do-Wan
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.29-34
    • /
    • 2007
  • Objective : Kyenegum(Galli Stomachichum Corium) has been popularly used long as the digestive. The purpose of this study was to investigate the enzymatic characteristic of Kyenegum crude enzyme. Methods : To evaluate of the enzymatic characteristic of Kyenegum, we examined the activity of Kyenegum crude enzyme from optimum solvent, optimum temperature and pH of crude Kyenegum extract. Futhermore, we examined the effects of NaCI and acidity of crude Kyenegum extract. Results : The Kyenegum was composed with crude protein about 20%, crude lipid 2%. The optimum Kyenegum dry condition, optimum extract solvent, optimum temperature and optimum pH were $4{\sim}6$ hours at $60^{\circ}C$, commercial apple vinegar, $50^{\circ}C$ and 2.0. Conclusion : The result suggests that the Kyenegum crude enzyme extract very strong enzyme in temperature, NaCl and acidity, respectively.

  • PDF

The impact of cardinal temperature variation on the germination of Haloxylon aphyllum L. seeds

  • Taghvaei, Mansour;Ghaedi, Masoumaeh
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • Seed germination is a biological process that is affected by a variety of genetic and environmental factors. The cardinal temperature and thermal time are required for germination. The principal objective of this study was to identify and characterize variations in the base, optimum, and maximum germination temperatures of Haloxylon aphyllum L. from two seed sources, in order to establish models for use in predicting seeding dates. Mature H. aphyllum seeds were germinated at temperatures between 5 and $35^{\circ}C$. The germination behavior of H. aphyllum seeds to different temperature regimens in light was evaluated over a temperature range of $5-35^{\circ}C$ at intervals of $5^{\circ}C$. The rate of germination increased between base and optimum thermal conditions, and decreased between optimum and maximum thermal conditions; the germination rate varied in a linear fashion at both sub-optimal and supra-optimal temperatures. The linear regression fit the range of germination rates at $5^{\circ}C$ to $25^{\circ}C$ and $25^{\circ}C$ to $30^{\circ}C$, and thus the base temperature, optimum temperature, and maximum temperature for the germination of H. aphyllum were measured to be $0.6^{\circ}C$, $25.69^{\circ}C$, $37.90^{\circ}C$, and $1.76^{\circ}C$, $21.56^{\circ}C$, $37.90^{\circ}C$ for Qom and the Fars dune desert respectively.

A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I) (자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I))

  • 박경석;신진식;이경우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF