• Title/Summary/Keyword: Optimum Nozzle Design

Search Result 62, Processing Time 0.02 seconds

Design of Venturi Dump Surface for Pre-filming Airblast Injector (예막 공기충돌형 분사기의 벤추리 덤프면 설계)

  • Shin, Dongsoo;Choi, Myunghwan;Radhakrishnan, Kanmaniraja;Koo, Jaye;Jung, Seungchai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.44-54
    • /
    • 2018
  • In a spray experiment using a venturi mounted on a lean premixed LPP injector, droplets appear to have non-uniform distributions. To solve this problem, the exit angle of the venturi was changed to form a dump surface on the nozzle neck. The dump surface improved the atomization performance and minimized droplet loss while forming recirculation zone in the venturi exit. In order to solve the non-uniform spray of the injector, the flow characteristics inside the venturi and SMD of the spray are compared. Finally, an optimum venturi shape is selected to minimize the spray loss and improve the spray performance.

Study on Computational Fluid Dynamics(CFD) Simulation for De-NOx in the incinerator at Taebaek city (태백시 소각로 내 NOx 제거를 위한 전산유체역학(CFD) simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.320-332
    • /
    • 2013
  • The feed air to MSW incinerator influences on the residence time of combustion gas, removal of unburnt ash and exiting gas temperature. Thus the secondary air volume could present sufficient residence time which can maintain the exiting temperature over $850^{\circ}C$. The secondary air also relates directly with the turbulence in the inside of combustion chamber, which finally provide the stable combustion condition. The present study designed a modern incinerator for a field scale, and evaluation of the potential amount of primary air based on the daily combustible quantity. From the evaluated primary air volume, the secondary air flow rate could be estimated, and its dynamic behavior was verified. In addition, the obtained air volume enables to find an optimum operation condition of the combustion. As a result of the CFD simulation, the air ratio 75 : 25 between primary and secondary air amount was optimum ratio than design criteria 72 : 28. And the flow velocity ratio of front-back of secondary air jet nozzle was found excellent at 1 : 3. In addition, the result of applied to the plant, the removal efficiency of NOx and CO generation would concentration of CO.