• 제목/요약/키워드: Optimum Cu

검색결과 714건 처리시간 0.029초

기계적합금화법에 의해 제조된 ZSM-5촉매특성에 미치는 Cu의 영향 (Effect of Copper on the Properties of ZSM-5 Catalyst Fabricated by Mechanical Alloying Method)

  • 안인섭
    • 한국분말재료학회지
    • /
    • 제3권3호
    • /
    • pp.153-158
    • /
    • 1996
  • The exhaust gas from vehicle engines and industrial boilers contains considerable amount of harmful nitrogen monoxide(NO) which causes air pollusion and acid rain. To remove NO catalytic reduction processes using Cu ion exchanged ZSM-5 zeolite have been widely studied. In this study, an attempt was made to fabricate Cu/zeolite catalyst by using high energy ball mill. The catalytic performance of ball milled Cu/ZSM-5 zeolites is analyzed and optimum copper contents was determined. The processing variables were reaction temperature and copper contents. Complete removal of NO gas was obtained at the temperature of 553 K on 10wt.% CU/ZSM-5 mechanically alloyed composite powders. Mechanically alloyed CU/ZSM-5 catalyst showed homogeneous distribution of Cu in ZSM-5.

  • PDF

전기화학적 방법에 의한 Cu-Ni 다층박막합금의 수학적 모델링 (Mathematical Modeling on Electrodeposition of Compositionally Modulated Cu-Ni Alloy)

  • 박경완;이철경;손헌준
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.223-233
    • /
    • 1994
  • It is well known that compositionally modulated Cu-Ni alloy can be produced by an electrochemical method in Ni sulfate solution containing trace amount of Cu. a mathematical model is presented to describe the current distribution and weight percent of Cu in Ni layer on the rotating disk electrode. The model includes convective-diffusion equation, the Laplace's equation and various overpotentials, and is solved numerically. The thickness of Cu layer is almost uniform whereas the thickness of Ni layer as well as the Ni/Cu weight ratio are increased approaching to the edge of the disk. These results agree well with the experimental values. The ohmic potential drop is suggested as a major cause of a nonuniformity in Ni layer. The optimum plating condition for the fabrication of susperlattice is proposed based on the results of this study.

  • PDF

Hot Wall Epitaxy (HWE) 법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 연구 (Study point defect and growth for $CuInSe_2$ single crystal thin film by hot wall epitaxy)

  • 유상하;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.152-153
    • /
    • 2007
  • $CuInSe_2$ single crystal thin film was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Cu}$, $V_{Se}$, $Cu_{lnt}$, and $Se_{lnt}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구 (A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구 (A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu)

  • 신규식;김문일;정재필;신영의
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.55-61
    • /
    • 2000
  • 직경 0.3 mm의 Sn-37Pb 및 Sn-3.5Ag-0.7Cu 솔더볼을 솔더링 온도와 기판의 이송속도 (conveyer speed)를 변화시켜 가며 리플로 솔더링 하였다. 리플로 솔더링 온도범위는 Sn-37Pb의 경우 220~$240^{\circ}C$, Sn-3.5Ag-0.7Cu의 경우는 230~ $260^{\circ}C$로 하였다. 실험결과, 전단강도 측면에서 최적 솔더링 조건을 Sn-37Pb의 경우 솔더링 온도 및 컨베이어 속도가 각각 $230^{\circ}C$, 0.7~0.8 m/min이고, Sn-3.5Ag-0.7Cu의 경우 각각 $250^{\circ}C$, 0.6 m/min으로 나타났다. 또한 최고 전단강도 값은 Sn-37Pb의 경우는 555 gf 이고 Sn-3.5Ag-0.7Cu의 경우는 617gf이다. 접합계면의 분석결과 Cu6Sn5층의 두께는 Sn-37Pb의 경우는 1.13~1.45 $\mu\textrm{m}$이고 Sn-3.5Ag-0.7Cu의 경우는 2.5~4.3 $\mu\textrm{m}$이다.

  • PDF

CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성 (Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.505-506
    • /
    • 2007
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc/$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL 14004).

  • PDF

Flux법에 의한 YBa2Cu3Ox 단결정 육성에 관한 연구 (Single Crystal Growth of YBa2Cu3Ox by Flux Method)

  • 서현석;설용건
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.27-34
    • /
    • 1990
  • Single crystals of YBa2Cu3Ox superconductor were grown by means of the flux method. The effectof starting material, cooling rate, melting time, and melting temperjature were evaluated as influencing paraemters. The larger single crystals of YBa2Cu3Ox were obtained with Y2BaCuOy powder as a starting material than with YBa2Cu3Ox powder. The optimum range of synthetic condition for single crystal growth was as follows ; 2-5$^{\circ}C$/hour of cooling rate, 2-5 hour of melting time and melting temperature at 106$0^{\circ}C$. The obtained size of single crystal was 2mm in average and the largest one was 5mm in maximum.

  • PDF

Al2O3/Cu 나노복합체 제조공정에 따른 미세조직 특성 (Microstructural Characteristics of Al2O3/Cu Nanocomposites Depending on Fabrication Process)

  • 강계명;오승탁
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.59-63
    • /
    • 2003
  • The microstructural characteristics of $Al_2$$O_3$/Cu composites hot-pressed at different temperatures for atmosphere switching from $H_2$to Ar have been studied. When the composite atmosphere was switched at $1000^{\circ}C$ it led to more homogeneous microstructure than when the atmosphere was switched at $1450^{\circ}C$. The strong sensitivity of Cu to atmosphere, especially the oxygen content in the atmosphere, was found to be responsible for the observed change, based upon the interfacial phenomena related to the formation of $CuAlO_2$. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and stable properties can be established.

구역용융법으로 제작된 NdBaCuO 초전도체의 산소흡착 특성 (Oxygenation of Zone-melting NbBaCuO superconductor)

  • Soh, Dea-Wha;Fan, Zhanguo;Kim, Hee-Nam;Li, Xinyu;Gao, Weiying;Kim, Tae-Wan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.292-295
    • /
    • 2001
  • The NdBaCuO superconducting samples were prepared by the Zone melting under low oxygen partial pressure. After the zone-melting the oxygenation process of the NdBaCuO samples in a oxygen flow furnace was studied. In order to compare the oxygenation condition the sintering NdBaCuO samples were studied also. In the study it is found that the optimum temperature for the oxygenation is $350^{\circ}C$, and the oxygen flow speed, the sample volume and the surface area of the sample would influence the oxygenation and the oxygen content.

  • PDF

레이저 어브레이션법에 의한 ${YBa}_{2}{Cu}_{3}{O}_{7-x}$ 박막의 제조와 특성 (The fabrication and properties of ${YBa}_{2}{Cu}_{3}{O}_{7-x}$ thin films by laser ablation)

  • 이덕출;최충석
    • 대한전기학회논문지
    • /
    • 제44권8호
    • /
    • pp.1063-1067
    • /
    • 1995
  • The superconducting properties of YBa$_{2}$Cu$_{3}$$O_{7-x}$(YBaCuO) thin films prepared by laser ablation have been investigated. The x-ray diffraction patterns and surface morphology of the films were substantially different from one another. The compositional ratios of YBaCuO films were controlled by the conditions of the target-substrate distance. The YBaCuO films manufactured on MgO(100) substrate were indicated T$_{c}$(zero)=91.2 K, T$_{c}$(onset)=93 K, and J$_{c}$=3.5*10$^{5}$ A/cm$^{2}$(at 77.3K). The optimum conditions were found to be a substrate temperature of 710 .deg. C, a energy density of 2 J/cm$^{2}$, and a target-substrate distance of 60 mm in an oxygen partial pressure of 200 mTorr.0 mTorr.

  • PDF