• Title/Summary/Keyword: Optimum

Search Result 24,586, Processing Time 0.041 seconds

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Optimum Design of Greenhouse Structures Using Continuous and Discrete Optimum Algorithms (연속 및 이산화 최적알고리즘에 의한 단동온실구조의 최적설계)

  • Park, Choon-Wook;Lee, Jong-Won;Lee, Hyun-Woo;Lee, Suk-Gun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.61-70
    • /
    • 2005
  • In paper the discrete optimum design program was developed using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms. In this paper, the objective function is the weight of structures and the constraints are limits state design limits method. The design variables are diameter and thick of steel pipe. Design examples are given to show the applicability of the optimum design using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms of this study.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

Development of Integrated Environment for Optimum Design Using Motif (모티프를 이용한 최적설계 통합환경 개발)

  • Lim, O-Kang;Cho, Heon;Kim,Young-Hyun;Lee, Byung-Woo
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.97-105
    • /
    • 1996
  • An integrated environment for optimum design has been developed using Motif. The integrated environment is composed of the preprocessor, the postprocessor and the optimization part. The preprocessor is part of making a finite element model for optimum structural design and the postprocessor displays results of optimum design and the optimization part is the part which execute optimization. It is designed to reduce user's difficulties in structural optimum design. It used Graphic User Interface for the concurrent representation of various inputs and outputs through the dialog box, mouse and keyboard. Structural optimum design can be done easily through dialog box, menu, concurrent representation of modeling process and results of structural optimum design can be understood easily through stress contour, deformed model and graph of cost function.

  • PDF

Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method- (저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

A Enzymatical Characteristics Study of Kyenegum (계내금(鷄內金)의 효소학적 특성 연구)

  • Kim, Do-Wan
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.29-34
    • /
    • 2007
  • Objective : Kyenegum(Galli Stomachichum Corium) has been popularly used long as the digestive. The purpose of this study was to investigate the enzymatic characteristic of Kyenegum crude enzyme. Methods : To evaluate of the enzymatic characteristic of Kyenegum, we examined the activity of Kyenegum crude enzyme from optimum solvent, optimum temperature and pH of crude Kyenegum extract. Futhermore, we examined the effects of NaCI and acidity of crude Kyenegum extract. Results : The Kyenegum was composed with crude protein about 20%, crude lipid 2%. The optimum Kyenegum dry condition, optimum extract solvent, optimum temperature and optimum pH were $4{\sim}6$ hours at $60^{\circ}C$, commercial apple vinegar, $50^{\circ}C$ and 2.0. Conclusion : The result suggests that the Kyenegum crude enzyme extract very strong enzyme in temperature, NaCl and acidity, respectively.

  • PDF