• Title/Summary/Keyword: Optimized calculation

Search Result 325, Processing Time 0.029 seconds

Soft Ground Settlement Estimation Using Neural Network (인공신경망을 이용한 연약지반 침하량 산정)

  • Roh, Jae-Ho;Won, Hyeo-Jea;Oh, Doo-Hwan;Hwang, Sun-Geun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1405-1410
    • /
    • 2006
  • Purpose of this research is that offers basic data for optimized design using neural network method to calculate consolidation settlement in study area. In this research, preformed the neural network method that analyzed the settlement characteristics of soft ground nearby study area. Thus, data base established on ground properties and consolidation settlement of neighboring area. In addition, designed the optimum neural network model for prediction of settlement through network learning and consolidation settlement prediction using consolidation settlement DB and ground properties DB. Optimized neural network model decided by repeated learning for various case of hidden layers. In this study, proposed that the optimized consolidation settlement calculation method using neural network and verified which is the optimized consolidation settlement calculation method using neural network.

  • PDF

Synthesis of Melandrin Derivatives (Melandrin 유도체의 합성)

  • Lim, Jung-Ki;Woo, Won-Sick;Lee, Kang-Ro;Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.281-285
    • /
    • 1994
  • Melandrin was isolated from the Melandrium firmum(Caryophyllaceae), its structure was N-(p-hydroxybenzoyl)-5-hydroxyanthranilic acid. Fourteen melandrin derivatives(I-XIV) were synthesized and according to MME calculation by the computer, optimized three dimensional structure of compounds was obtained. The space orientation of compounds was cis-form as a indomethacin.

  • PDF

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

Study of Pd substitution in orthorhombic-NiSi/Si (010) structure: First principles calculation (Orthorhombic-NiSi/Si (010) 구조의 Pd 치환 연구: 제 1 원리 계산)

  • Kim, Dae-Hee;Kim, Dae-Hyun;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.41-44
    • /
    • 2008
  • NiSi is less stable than the previously-used $CoSi_2$ at high temperature. Some noble metals, such as Pd and Pt, have been added to NiSi to improve its thermal stability. We employed a first principles calculation to understand the Pd segregation at the interface. An orthorhombic structure of NiSi was used to construct an orthorhombic-NiSi/Si (010). Lattice parameters along a- and c-axes in orthorhombic-NiSi were matched with those of Si for epitaxy contact. The optimized $1\times4\times1$ orthorhombic-NiSi (010) and $1\times2\times1$ Si (010) superstructures were put together to construct the orthorhombic-NiSi/Si (010), and the superstructure was relieved in calculation to minimize its total free energy. The optimized interface thickness of the superstructure was $1.59\AA$. Pd atom was substituted in Ni and Si sites located near interface. Both Ni and Si sites located at the interface were favorable for Pd substitution.

  • PDF

Unsteady-state analysis of current lead for DC Reactor of 6.6kV-200A superconductor current limiter (6.6kV-200A급 초전도 한류기 DC Reactor용 전류도입선의 비정상상태 해석)

  • 김형진;권기범;정은수;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.182-185
    • /
    • 2003
  • Temperature distribution and cooling load in binary current lead are analized, occurring fault current at DC Reactor type superconductor fault current limiter. It is assumed that Normal operating current is 300 A and fault current is 3000 A. Unsteady-state temperature distribution and cooling load of brass current lead optimized for 300 A and 1000 A are calculated by numerical method with TDMA. In the result of calculation, temperature increase in the brass current lead optimized for 300 A is higher than that in the brass current lead optimized for 1000 A, but the temperature increase in the brass current lead optimized for 300 A is not serious. Moreover, increase of cooling load in the brass current lead optimized for 300 A is higher than that in the brass current lead optimized for 1000 A, but normal cooling load in the brass current lead optimized for 300 A is lower than that in the brass current lead optimized for 1000 A. Therefore, designing current lead in superconductor fault current limiter had better to optimize for normal operating current.

  • PDF

A Computational Investigation of the Stability of Cyclopropyl Carbenes

  • Baik, Woon-Phil;Yoon, Cheol-Hun;Koo, Sang-Ho;Kim, Byeong-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.90-96
    • /
    • 2004
  • The conformations of dicyclopropyl, isopropyl cyclopropyl, and diisopropylcarbenes were optimized using density functional theory (B3LYP/6-31G(d)). We showed that the optimized geometries of carbenes with cyclopropyl groups are fully in accord with those expected for bisected W-shaped conformations, in which the effective hyperconjugation of a cyclopropyl group with singlet carbene can occur. The stabilization energies were evaluated at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G(d) + ZPE level using an isodesmic equation. The relative stability of carbenes is in the order $(c-Pr)_2$C: > (i-Pr)(c-Pr)C: > $(i-Pr)_2$C:, and a cyclopropyl group stabilizes carbene more than an isopropyl group by nearly 9 kcal/mol. Energies for the decomposition of diazo compounds to carbenes increase in the order $(c-Pr)_2$ < (i-Pr)(c-Pr) < $(i-Pr)_2$ by ~9 kcal/mol each. From a singlettriplet energy gap ($E_{ST}$) calculation, the singlet level is lower than the triplet level and the $E_{ST}$ shows a trend similar to the stabilization energy calculations. For comparison, the optimized geometries and stabilization energies for the corresponding carbocations were also studied at the same level of calculation. The greater changes in geometries and the higher stabilization energies for carbocations compared to carbenes can explain the greater hyperconjugation effect.

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

The Study on Optimization of HVAC Systems Design in Tall Buildings (초고층 건축물의 최적화된 설비시스템 설계를 위한 기초연구)

  • Yu, Jung-Yeon;Cho, Dong-Woo;Yu, Ki-Hyung
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The optimized HVAC system design in tall buildings enable owners to save unnecessary energy consumption and residents to have comfort environments. The purpose of this study is to develop design process for optimized HVAC system design in tall buildings. As basic researches, literature researches and case studies of HVAC system design in tall buildings were performed. Survey was processed among expert in the field and key considerations on HVAC system design were drew as conclusions. With these conclusions, studies were performed on effects of wind velocity, outdoor air temperature, and solar radiation that are main factors of load calculation in tall buildings. Finally, air-tightness and stack effect were analyzed and estimated by literature studies, field measurements and computer simulations.

Development of 3-D J-Integral Calculation Method for Structural Integrity Evaluation (기기 건전성 평가를 위한 3차원 J-적분 계산 전산코드 응용평가 연구)

  • Kim, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.450-454
    • /
    • 1999
  • In order to evaluate the integrity of nuclear power plants, J-integral calculation is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, high cost time consuming preprocess should be performed to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative method since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI(Domain Integral) and EDI(Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

  • PDF

Applying the Schema Matching Method to XML Semantic Model of Steelbox-bridge's Structural Calculation Reports (강박스교 구조계산서 XML 시맨틱 모델의 스키마 매칭 기법 적용)

  • Yang Yeong-Ae;Kim Bong-Geun;Lee Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.680-687
    • /
    • 2005
  • This study presents a schema matching technique which can be applied to XML semantic model of structural calculation reports of steel-box bridges. The semantic model of structural calculation documents was developed by extracting the optimized common elements from the analyses of various existing structural calculation documents, and the standardized semantic model was schematized by using XML Schema. In addition, the similarity measure technique and the relaxation labeling technique were employed to develop the schema matching algorithm. The former takes into account the element categories and their features, and the latter considers the structural constraints in the semantic model. The standardized XML semantic model of steel-box bridge's structural calculation documents called target schema was compared with existing nonstandardized structural calculation documents called primitive schema by the developed schema matching algorithm Some application examples show the importance of the development of standardized target schema for structural calculation documents and the effectiveness and efficiency of schema matching technique in the examination of the degree of document standardization in structural calculation reports.

  • PDF