• Title/Summary/Keyword: Optimized algorithm

Search Result 1,831, Processing Time 0.027 seconds

System Identification by Real-Coded Genetic Algorithm (실수코딩 유전알고리즘을 이용한 시스템 식별)

  • Ahn, Jong-Kap;Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.599-605
    • /
    • 2007
  • This paper presents a method for identifying various systems based on input-output data and a real-coded genetic algorithm(RCGA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function of linearly separable parameters. Under suitable hypotheses, the estimation error is shown to converge in probability to zero. The performance of the proposed algorithm is demonstrated through several simulations.

Interference Avoidance through Pilot-Based Spectrum Sensing Algorithm in Overlaid Femtocell Networks

  • Sambanthan, Padmapriya;Muthu, Tamilarasi
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Co-channel interference between macro-femtocell networks is an unresolved problem, due to the frequency reuse phenomenon. To mitigate such interference, a secondary femtocell must acquire channel-state knowledge about a co-channel macrocell user and accordingly condition the maximum transmit power of femtocell user. This paper proposes a pilot-based spectrum sensing (PSS) algorithm for overlaid femtocell networks to sense the presence of a macrocell user over a channel of interest. The PSS algorithm senses the pilot tones in the received signal through the power level and the correlation metric comparisons between the received signal and the local reference pilots. On ensuring the existence of a co-channel macrocell user, the maximum transmit power of the corresponding femtocell user is optimized so as to avoid interference. Time and frequency offsets are carefully handled in our proposal. Simulation results show that the PSS algorithm outperforms existing sensing techniques, even at poor received signal quality. It requires less sensing time and provides better detection probability over existing techniques.

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

Content-based Image Indexing Using PCA

  • Yu, Young-Dal;Jun, Min-Gun;Kim, Daijij;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.827-830
    • /
    • 2000
  • In this paper, we propose the method using PCA(principal component analysis) algorithm when proposed algorithm performs multimedia information indexing. After we extract DC coefficients of DCT from MPEG video stream which is an international standard of moving picture compression coding, we apply PCA algorithm to image made of DC coefficients and extract the feature of each DC image. Using extracted features, we generate codebook and perform multimedia information indexing. The proposed algorithm Is very fast when indexing and can generate optimized codebook because of using statistical feature of data

  • PDF

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

Estimation of software project effort with genetic algorithm and support vector regression (유전 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 비용산정)

  • Kwon, Ki-Tae;Park, Soo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.729-736
    • /
    • 2009
  • The accurate estimation of software development cost is important to a successful development in software engineering. Until recent days, the model using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software cost using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying genetic algorithm. The proposed GA-SVR model outperform some recent results reported in the literature.

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 최적 걸음새에 관한 연구)

  • 공정식;노경곤;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Optimization of Local Retail Distribution Company Problem using Genetic Algorithm (지역소매 유통회사의 효율 최적화를 위한 Genetic Algorithm의 적용)

  • Yoon, H. M.;Kim, D. W.;Ryu, K. W.
    • Journal of Korean Port Research
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 1997
  • In this paper, we codify the objective function that should be optimized by using Genetic Algorithm instead of Heuristic method to solve these problems. So, each bit that constitutes one structure can signify each commodity. Therefore, we can exchange customers without restriction if the traveling distance diminishes among the districts. Furthermore, even though the capacity of a customer's commodities exceeds that of a vehicle, the following vehicle can be allocated. Also, we obtained good result by testing with real data. To be brief, we can effectively allocate innumerable commodities, that have various magnitudes and weight, into restricted capacity of the vehicle by applying genetic algorithm that is useful in solving the problems of optimization.

  • PDF

FPGA Design of a Parallel Canny Edge Detector with Optimized Local Buffers (로컬 버퍼 최적화를 통한 병렬 처리 캐니 경계선 검출기의 FPGA 설계)

  • Ingi Min;Suhyun Sim;Seungwon Hwang;Sunhee Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.59-65
    • /
    • 2023
  • Edge detection in image processing and computer vision is one of the most fundamental operations. Canny edge detection algorithm has excellent performance and is currently widely used. However, it is difficult to process the algorithm in real-time because the algorithm is complex. In this study, the equations required in the algorithm were simplified to facilitate hardware implementation, and the calculation speed was increased by using a parallel structure. In particular, the size and management of local buffers were selected in consideration of parallel processing and filter size so that data could be processed without bottlenecks. It was designed in verilog and implemented in FPGA to verify operation and performance.

  • PDF