• Title/Summary/Keyword: Optimized algorithm

Search Result 1,809, Processing Time 0.034 seconds

Optimization and Verification of Parameters Used in Successive Zooming Genetic Algorithm (순차적 주밍 유전자 알고리즘 기법에 사용되는 파라미터의 최적화 및 검증)

  • KWON YOUNG-DOO;KWON HYUN-WOOK;KIM JAE-YONG;JIN SEUNG-BO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 2004
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is proposed for identifying a global solution, using continuous zooming factors for optimization problems. In order to improve the local fine-tuning of the GA, we introduced a new method whereby the search space is zoomed around the design variable with the best fitness per 100 generation, resulting in an improvement of the convergence. Furthermore, the reliability of the optimized solution is determined based on the theory of probability, and the parameter used for the successive zooming method is optimized. With parameter optimization, we can eliminate the time allocated for deciding parameters used in SZGA. To demonstrate the superiority of the proposed theory, we tested for the minimization of a multiple function, as well as simple functions. After testing, we applied the parameter optimization to a truss problem and wicket gate servomotor optimization. Then, the proposed algorithm identifies a more exact optimum value than the standard genetic algorithm.

Sliding Mode Control for Servo Motors Based on the Differential Evolution Algorithm

  • Yin, Zhonggang;Gong, Lei;Du, Chao;Liu, Jing;Zhong, Yanru
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.92-102
    • /
    • 2018
  • A sliding mode control (SMC) for servo motors based on the differential evolution (DE) algorithm, called DE-SMC, is proposed in this study. The parameters of SMC should be designed exactly to improve the robustness, realize the precision positioning, and reduce the steady-state speed error of the servo drive. The main parameters of SMC are optimized using the DE algorithm according to the speed feedback information of the servo motor. The most significant influence factor of the DE algorithm is optimization iteration. A suitable iteration can be achieved by the tested optimization process profile of the main parameters of SMC. Once the parameters of SMC are optimized under a convergent iteration, the system realizes the given performance indices within the shortest time. The experiment indicates that the robustness of the system is improved, and the dynamic and steady performance achieves the given performance indices under a convergent iteration when motor parameters mismatch and load disturbance is added. Moreover, the suitable iteration effectively mitigates the low-speed crawling phenomenon in the system. The correctness and effectiveness of DE-SMC are verified through the experiment.

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.

An Learning Algorithm to find the Optimized Network Structure in an Incremental Model (점증적 모델에서 최적의 네트워크 구조를 구하기 위한 학습 알고리즘)

  • Lee Jong-Chan;Cho Sang-Yeop
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.69-76
    • /
    • 2003
  • In this paper we show a new learning algorithm for pattern classification. This algorithm considered a scheme to find a solution to a problem of incremental learning algorithm when the structure becomes too complex by noise patterns included in learning data set. Our approach for this problem uses a pruning method which terminates the learning process with a predefined criterion. In this process, an iterative model with 3 layer feedforward structure is derived from the incremental model by an appropriate manipulations. Notice that this network structure is not full-connected between upper and lower layers. To verify the effectiveness of pruning method, this network is retrained by EBP. From this results, we can find out that the proposed algorithm is effective, as an aspect of a system performence and the node number included in network structure.

  • PDF

The Study on the Optimized Earthwork Transfer Path Algorithm Considering the Precluded Area of Massive Cutting and Banking (대규모 절성토 지역의 제척지를 고려한 최적화된 토량이동 경로 알고리즘 개발에 관한 연구)

  • Kang, Tae-Wook;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • The purpose of this study is to suggest the optimized transfer algorithm of earthwork considering the precluded area such as the lake, bogs. The earthwork transfer plan in massive cutting and banking should be established because of affecting the construction cost highly. Until now, there was the study about the optimized earthwork transfer model considering the OR(Operating Research). but isn't the study about the model considering the precluded area such as the lake, bogs. In most cases, the engineer adjusts the earthwork transfer path considering the precluded area, manually. The presented model suggests to calculate various visibility paths with $A^*$algorithm after converting the precluded area to polygon topology. By using this paths, the minimum cost path to optimize the earthwork transfer can be obtained. In this study, the validity of the model was proved as implementing the system for the optimized earthwork transfer considering the precluded area.

Improving the Implementation Complexity of the Latency-Optimized Fair Queuing Algorithm (최적 레이턴시 기반 공정 큐잉 알고리즘의 구현 복잡도 개선)

  • Kim, Tae-Joon;Suh, Bong-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.405-413
    • /
    • 2012
  • WFQ(Weighted Fair Queuing) is the most popular fair queuing algorithm to guarantee the Quality-of-Service(QoS), but it has the inherent drawback of a poor resource utilization, particularly under the low rate traffic requiring a tight delay bound. It was recently identified that the poor utilization is mainly due to non-optimized latency of a traffic flow and then LOFQ(Latency-Optimized Fair Queuing) to overcome the drawback was introduced. The LOFQ algorithm, however, renews their optimal latencies for all flows whenever a new flow arrives, which results in the high implementation complexity of O($N^2$).This paper is to reduce thecomplexity to O(1). The proposed method is first to derive the optimal latency index function from the statistical QoS characteristics of the offered load, and then to simply calculate the optimal latency index of the arriving flow using the function.

Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화)

  • HONG CHUNG You;LEE JIN UK;PARK JE WOONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

EPCglobal Class-1 Gen-2 Anti-collision Algorithm with Tag Number Estimation Scheme (태그 수 추정 기법을 적용한 EPCglobal Class-1 Gen-2 충돌방지 알고리즘)

  • Lim, In-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1133-1138
    • /
    • 2010
  • In the anti-collision scheme proposed by EPCglobal Class-1 Gen-2 standard, the frame size for a query round is determined by Q-algorithm. In the Q-algorithm, the reader calculates a frame size without estimating the number of tags in it's identification range. It uses only the slot status. Therefore, Q-algorithm has advantage that the reader's algorithm is simpler than other algorithms. However, it cannot allocate an optimized frame size because it does not consider the number of tags. Also, the conventional Q-algorithm does not define an optimized parameter value C for adjusting the frame size. In this paper, we propose a modified Q-algorithm and evaluate the performance with computer simulations. The proposed Q-algorithm estimates the number of tags at every query round, and determines the parameter value C based on the estimated number of tags.

Estimation of Software Reliability with Immune Algorithm and Support Vector Regression (면역 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 신뢰도 추정)

  • Kwon, Ki-Tae;Lee, Joon-Kil
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.129-140
    • /
    • 2009
  • The accurate estimation of software reliability is important to a successful development in software engineering. Until recent days, the models using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software reliability using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying immune algorithm, changing the number of generations, memory cells, and allele. The proposed IA-SVR model outperforms some recent results reported in the literature.

A study on improvement of SPIHT algorithm using redundancy bit removing (중복비트 제거를 이용한 SPIHT알고리즘의 개선에 관한 연구)

  • 설경호;이원효;고기영;김태형;김두영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1920-1923
    • /
    • 2003
  • This paper presents compression rate improvement for SPIHT algorithm though redundancy bit removing. Proposed SPIHT algorithm uses a method to select of optimized threshold from feature of wavelet transform coefficients and removes sign bit if coefficient of LL area. Experimental results show that the proposed algorithm achieves more improvement bit rate and more fast progressive transmission with low bit rate.

  • PDF