• Title/Summary/Keyword: Optimized Approximation

Search Result 90, Processing Time 0.021 seconds

Stress and Deformation Analysis of a Tool Holder Spindle using $iSight^{(R)}$ ($iSight^{(R)}$를 이용한 툴 홀더 스핀들의 변형 및 응력해석)

  • Kwon, Koo-Hong;Chung, Won-Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.103-110
    • /
    • 2010
  • This paper presents the optimized approximation of finite element modeling for a complex tool holder spindle using both DOE (Design of Experiment) with Optimal Latin Hypercube (OLH) method and approximation modeling method with Radial Basis Function (RBF) neural network structure. The complex tool holder is used for holding a (milling/drilling) tool of a machine tool. The engineering problem of complex tool holder results from the twisting of spindle of tool holder. For this purpose, we present the optimized approximation of finite element modeling for a complex tool holder spindle using both DOE (Design of Experiment) with Optimal Latin Hypercube (OLH) method (specifically a module of $iSight^{(R)}$ FD-3.1) and approximation modeling method with Radial Basis Function (RBF) (another module of $iSight^{(R)}$ FD-3.1) neural network structure

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile (듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계)

  • Byon, Sung-Kwang;Lee, Dong-Hyeong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

Variable Structure Control with Optimized Sliding Surface for Spacecraft Slewing Maneuver

  • Cho, Sang-Bum;Moon, Gwan-Young;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • A variable structure controller with an optimized sliding surface is proposed for slew maneuver of a rigid spacecraft. Rodrigues parameters are chosen to represent the spacecraft attitude. The quadratic type of performance index is used to design the sling surface. For optimization of the sliding surface, a Hamilton- Jacobi-Bellman equation is formulated and it is solved through the numerical algorithm using Galerkin approximation. The solution denotes a nonlinear sliding surface, on which the trajectory of the system satisfies the optimality condition approximately. Simulation result demonstrates that the proposed controller is effectively applied to the slew maneuver of a rigid spacecraft.

Walking Pattern Generation for a Biped Robot Using Polynomial Approximation (다항식 근사를 이용한 이족보행 로봇의 보행패턴 생성)

  • Kang, Yun-Seok;Park, Jung-Hun;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.567-572
    • /
    • 2004
  • In this research, a stable walking pattern generation method for a biped robot is presented. A biped robot is considered as constrained multibody system by several kinematic joints. The proposed method is based on the optimized polynomial approximation of the trunk motion along the moving direction. Foot motions can be designed according to the ground condition and walking speed. To minimize the deviation from the desired ZMP, the trunk motion is generated by the fifth order polynomial approximation. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

  • PDF

Optimization of the Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화)

  • 김성주;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

Minimum cost design of RCMRFs based on consistent approximation method

  • Habibi, Alireza;Shahryari, Mobin;Rostami, Hasan
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, a procedure for automated optimized design of reinforced concrete frames has been presented. The procedure consists of formulation and solution of the design problem in the form of an optimization problem. The minimization of total cost of R/C frame has been taken as the objective of optimization problem. In this research, consistent approximation method is applied to explicitly formulate constraints and objective function in terms of the design variables. In the presented method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the Sequential Quadratic Programming (SQP) method. The proposed method is demonstrated through a four-story frame and an eight-story frame, and the optimum results are compared with those in the available literature. It is shown that the proposed method can be easily applied to obtain rational, reliable, economical and practical designs for Reinforced Concrete Moment Resisting Frames (RCMRFs) while it is converged after a few analyses.

Optimized Algebra LDPC Codes for Bandwidth Efficient Modulation

  • Hwang, Gi-Yean;Yu Yi;Lee, Moon-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • In this paper, we implement an efficient MLC/PDL system for AWGN channels. In terms of the tradeoff between the hardware implementation and system performance, proposed algebra LDPC codes are optimized by the Gaussian approximation(GA) according to the rate of each level assigned by the capacity rule and chosen as the component code. System performance with Ungerboeck Partitioning(UP), Miked Partitioning(MP) and Gray Mapping(GM) of 8PSK are evaluated, respectively. Many results are presented in this paper; they can indicate that the proposed MLC/PDL system using optimized algebra LDPC codes with different code rate, capacity rule and Gray mapping(GM) can achieve the best performance.

Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method (Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화)

  • Choi Chang-Soon;Lee Jin-Yong;Kim Young-Lok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.15-20
    • /
    • 2006
  • A Newton-Raphson Method for table driven algorithm is presented in this paper. We concentrate the approximation of square root by using Newton-Raphson method. We confirm that this method has advantages of accurate and fast processing with optimized initial point. Hence the selection of the fitted initial points used in approximation of Newton-Raphson algorithm is important issue. This paper proposes that log scale based on geometric wean is most profitable initial point. It shows that the proposed method givemore accurate results with faster processing speed.