• Title/Summary/Keyword: Optimize the Building System

Search Result 93, Processing Time 0.03 seconds

A FRAMEWORK FOR SIMULATING CONSTRUCTION PROCESSES FOR OPTIMIZING THE FLOOR CONSTRUCTION CYCLE USING BIM

  • Seung-Jun Ahn;Hyun-Soo Lee;Moonseo Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.835-840
    • /
    • 2009
  • Lately, Building Information Modeling (BIM) emerges as the most promising technology, now is expected to bring a great deal of improvement of productivity in every aspect of the construction industry. One of the BIM based scheduling is to use BIM model as a base for applying to schedule analysis and simulation tools. This type of tools may incorporate a various types of information such as the building model, construction method information, resource information, productivity information, rules and constraints to optimize activity sequencing. This paper proposes a framework of BIM based simulating system which can be used to optimize construction processes, especially for the floor construction cycle. For the purpose, all of the necessary components of the system will be defined and represented, and next an algorithm will be introduced to demonstrate the principle of simulating operation. The benefits of this technique are basically two : to test and optimize construction methods in respect of the construction duration and to reduce the floor construction cycle.

  • PDF

IMPROVING DECISION SUPPORT PROCESS IN COOPERATIVE DESIGN FOR BUILDING PROJECT

  • Su-Kyung Cho;Chang-Hyun Shin;Jae-Youl Chun;Yoon-Ki Choi;Dong-Woo Shin
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1144-1149
    • /
    • 2005
  • This paper presents how to establish the decision support model for the cooperative design in order to improve design coordination and optimize the building system. With this view, the paper presents the method that analyzes decision making participants of each building system on drawings. It also presents the combination evaluation method from the viewpoint of performance, cost and constructability to improve the decision making process in cooperative design.

  • PDF

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • Azizi, Mahdi;Ghasemi, Seyyed Arash Mousavi;Ejlali, Reza Goli;Talatahari, Siamak
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.781-797
    • /
    • 2020
  • In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

A Conceptual Framework of an Agent-Based Space-Use Prediction Simulation System

  • Cha, Seung Hyun;Kim, Tae Wan
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.12-15
    • /
    • 2015
  • Size of building has a direct relationship with building cost, energy use and space maintenance cost. Therefore, minimizing building size during a project development is of paramount importance against such wastes. However, incautious reduction of building size may result in crowded space, and therefore harms the functionality despite the fact that building is supposed to satisfactorily support users' activity. A well-balanced design solution is, therefore, needed at an optimum level that minimizes building size in tandem with providing sufficient space to maintain functionality. For such design, architects and engineers need to be informed accurate and reliable space-use information. We present in this paper a conceptual framework of an agent-based space-use prediction simulation system that provides individual level space-use information over time in a building in consideration of project specific user information and activity schedules, space preference, ad beavioural rules. The information will accordingly assist architects and engineers to optimize space of the building as appropriate.

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Towards More Accurate Space-Use Prediction: A Conceptual Framework of an Agent-Based Space-Use Prediction Simulation System

  • Cha, Seung Hyun;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.349-352
    • /
    • 2015
  • Size of building has a direct relationship with building cost, energy use and space maintenance cost. Therefore, minimizing building size during a project development is of paramount importance against such wastes. However, incautious reduction of building size may result in crowded space, and therefore harms the functionality despite the fact that building is supposed to satisfactorily support users' activity. A well-balanced design solution is, therefore, needed at an optimum level that minimizes building size in tandem with providing sufficient space to maintain functionality. For such design, architects and engineers need to be informed accurate and reliable space-use information. We present in this paper a conceptual framework of an agent-based space-use prediction simulation system that provides individual level space-use information over time in a building in consideration of project specific user information and activity schedules, space preference, ad beavioural rules. The information will accordingly assist architects and engineers to optimize space of the building as appropriate.

  • PDF

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Analysis of Building Energy using Automated Weather System Data (자동 기상관측 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kang, Dong-Bae;Lee, Kang-Yoel;Jung, Woo-Sik;Sim, Je-Hean;Yoon, Seong-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.493-502
    • /
    • 2014
  • EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. This program provides energy analysis of building and needs weather data for simulation. Weather data is available for over 2,000 locations in a file format that can be read by EnergyPlus. However, only five locations are avaliable in Korea. This study intends to use AWS data for having high spatial resolution to simulate building energy. The result of this study shows the possibility of using AWS data for energy simulation of building.

A Study on Application of the Building Energy Management System(BEMS) for Korean Small or Medium Buildings (국내 중소규모 건축물의 에너지관리시스템 적용방안에 관한 연구)

  • Byun, Jeong-Yoon;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.159-160
    • /
    • 2011
  • Recently there are many efforts for saving energy in building. therefore Building energy management systems(BEMS) are expected to a reduction energy cost. BEMS has many benefits which could switch plant on and off automatically. Also It optimize plan operation and services, monitor plant status and environmental conditions and to provide energy analysis and management information. In these days, many public buildings are applied BEMS but there are few studies about application of small or medium buildings. Therefore, in this study, we will find how to apply BEMS in small or medium buildings.

  • PDF

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.