• Title/Summary/Keyword: Optimization of Operating Condition

Search Result 152, Processing Time 0.028 seconds

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment (바이오에너지 생산 및 폐수처리를 위한 미생물연료전지)

  • Nah, Jaw-Woon;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.567-578
    • /
    • 2013
  • A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.

Development of a Styrene Monomer Reactor Simulator

  • Yoon, Sung-geun;Heejin Lim;Kang, Min-gu;Lee, Jeongseok;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.5-69
    • /
    • 2002
  • 1. Introduction 2. System Description 3. Hybrid Modeling of SM Reactor 4. Simulation Results 5. Optimization of Operating Condition 6. Conculsion

  • PDF

Efficiency Optimization Control for Energy Saving of Synchronous Reluctance Motor (동기 리럭턴스 전동기의 에너지 절감을 위한 효율 최적화 제어)

  • Lee Jung-Chul;Lee Hong-Gun;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.159-162
    • /
    • 2001
  • This paper is proposed an efficiency optimization operation algorithm for synchronous reluctance motor (SynRM) using current phase angle control technique. The SynRM has to controlled with the optimal current phase angles with load and operation speed variation, to obtain high efficiency over the wide speed ranges. An efficiency optimization condition in SynRM which minimizes the copper and iron losses is derived based on the equivalent circuit model of the machine. The objective of the efficiency optimization control algorithm compensating the optimum current angle, is to seek a combination of d and q-axis current components which provides minimum losses at a certain operating point in steady state. The usefulness of the proposed efficiency optimization control is verified through vector-controlled inverter system with the SynRM.

  • PDF

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Topology Optimization of the Decking Unit in the Aluminum Bass Boat and Strength Verification using the FEM-program

  • Seo, Kwang-Cheol;Gwak, Jin;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.367-372
    • /
    • 2018
  • The objective of this paper is to optimize the cross-section of aluminum decking units used in the bass boats under operating conditions, and to verify the optimized model from the results via by ANSYS software. Aluminum decking unit is needed to endure specific loading while leisure activity and sailing. For a stiffer and more cost-neutral aluminum decking unit, optimization is often considered in the naval and marine industries. This optimization of the aluminum decking unit is performed using the ANSYS program, which is based on the topology optimization method. The generation of finite element models and stress evaluations are conducted using the ANSYS Multiphysics module, which is based on the Finite Element Method (FEM). Through such a series of studies, it was possible to determine the most suitable case for satisfying the structural strength found among the phase-optimized aluminum deck units in bass boats. From these optimization results, CASE 1 shows the best solution in comparison with the other cases for this optimization. By linking the topology optimization with the structural strength analysis, the optimal solution can be found in a relatively short amount of time, and these procedures are expected to be applicable to many fields of engineering.

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ) (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ))

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

A Three-Dimensional Numerical Model for the Investing of Combustion Characteristics and Optimization of Operating Performances in Municipal Waste Incinerator (도시 폐기물 소각로의 연소특성 및 운전성능 최적화를 위한 3차원 수치모델링)

  • 전영남;정오진;송형운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • In this study, a 3-dimensional numerical model, has been developed applied for the investigation of combustion characteristics, and used to optimize operating conditions in MSW incinerator, in Gwangju. The model developed in this study has been verified by exacting both the predicted and the measured temperature in combustion chamber which has been operated to provide a reference condition. By predictive results, the Sangmoo incinerator has a good characteristics of combustion and low emission however after burning zone produced incomplete products, also probably because the supply of primary air was not enough. Parametric screening studies have been conducted to study optimal operating conditions. For the optimal combustion characteristics, operating conditions should be adjusted with the waste properties.

Effects of Key Operating Parameters on the Efficiency of Two Types of PEM Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications

  • Kim Han-Sang;Lee Dong-Hun;Min Kyoungdoug;Kim Minsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1018-1026
    • /
    • 2005
  • The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were con­sidered. The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using muli­object variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.