• 제목/요약/키워드: Optimization of Computer Network

검색결과 504건 처리시간 0.026초

Socially Aware Device-to-multi-device User Grouping for Popular Content Distribution

  • Liu, Jianlong;Zhou, Wen'an;Lin, Lixia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4372-4394
    • /
    • 2020
  • The distribution of popular videos incurs a large amount of traffic at the base stations (BS) of networks. Device-to-multi-device (D2MD) communication has emerged an efficient radio access technology for offloading BS traffic in recent years. However, traditional studies have focused on synchronous user requests whereas asynchronous user requests are more common. Hence, offloading BS traffic in case of asynchronous user requests while considering their time-varying characteristics and the quality of experience (QoE) of video request users (VRUs) is a pressing problem. This paper uses social stability (SS) and video loading duration (VLD)-tolerant property to group VRUs and seed users (SUs) to offload BS traffic. We define the average amount of data transmission (AADT) to measure the network's capacity for offloading BS traffic. Based on this, we formulate a time-varying bipartite graph matching optimization problem. We decouple the problem into two subproblems which can be solved separately in terms of time and space. Then, we propose the socially aware D2MD user selection (SA-D2MD-S) algorithm based on finite horizon optimal stopping theory, and propose the SA-D2MD user matching (SA-D2MD-M) algorithm to solve the two subproblems. The results of simulations show that our algorithms outperform prevalent algorithms.

Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm

  • Lee, Jae-Hong;Kim, Do-hyung;Jeong, Seong-Nyum;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제48권2호
    • /
    • pp.114-123
    • /
    • 2018
  • Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

RRSEB: A Reliable Routing Scheme For Energy-Balancing Using A Self-Adaptive Method In Wireless Sensor Networks

  • Shamsan Saleh, Ahmed M.;Ali, Borhanuddin Mohd.;Mohamad, Hafizal;Rasid, Mohd Fadlee A.;Ismail, Alyani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권7호
    • /
    • pp.1585-1609
    • /
    • 2013
  • Over recent years, enormous amounts of research in wireless sensor networks (WSNs) have been conducted, due to its multifarious applications such as in environmental monitoring, object tracking, disaster management, manufacturing, monitoring and control. In some of WSN applications dependent the energy-efficient and link reliability are demanded. Hence, this paper presents a routing protocol that considers these two criteria. We propose a new mechanism called Reliable Routing Scheme for Energy-Balanced (RRSEB) to reduce the packets dropped during the data communications. It is based on Swarm Intelligence (SI) using the Ant Colony Optimization (ACO) method. The RRSEB is a self-adaptive method to ensure the high routing reliability in WSNs, if the failures occur due to the movement of the sensor nodes or sensor node's energy depletion. This is done by introducing a new method to create alternative paths together with the data routing obtained during the path discovery stage. The goal of this operation is to update and offer new routing information in order to construct the multiple paths resulting in an increased reliability of the sensor network. From the simulation, we have seen that the proposed method shows better results in terms of packet delivery ratio and energy efficiency.

복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구 (Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment)

  • 부옥매;김민영;장종욱
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.50-56
    • /
    • 2020
  • 현재 심층 신경망 이론 및 응용 연구의 빠른 개발로 얼굴 인식의 효과가 향상되고 있다. 그러나 심층 신경망 계산의 복잡성과 탐지 환경의 복잡성으로 인해 얼굴을 빠르고 정확하게 감지하는 방법이 주요 문제가 된다. 이 논문은 FDDB, LFW 및 FaceScrub 공개 데이터 세트를 훈련 표본을 사용하는 단순한 MTCNN 모델을 기반으로 둔다. MTCNN 모델을 분류하고 소개하면서 학습 훈련 속도를 높이고 성능을 향상하는 방법을 모색합니다. 본 논문에서는 다이내믹 이미지 피라미드 기술을 이용하여 기존 이미지 Pyramid 기술을 대체하여 샘플을 분할하고 MTCNN 모델의 OHEM을 훈련에서 제거하여 훈련 속도를 향상시켰다.

Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2021
  • 본 논문에서는 초해상도(Super-Resolution, SR)을 계산하는데 필요한 물리 기반 시뮬레이션 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 시뮬레이션 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 대폭 감소시킨다. 이 과정에서 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 수치 손실되는 문제를 완화하며 쿼드트리를 구축한다. 학습에 사용된 데이터는 COCO 2017 데이터 셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual) 보완 방식과 유사하게 이전 계층의 출력 값을 더해주며 학습을 진행한다. 실험결과가 연기의 경우 제안된 방법은 이전 접근법에 비해 약 15~18배 정도의 속도향상을 얻었다.

신경망의 노드 가지치기를 위한 유전 알고리즘 (Genetic Algorithm for Node P겨ning of Neural Networks)

  • 허기수;오일석
    • 전자공학회논문지CI
    • /
    • 제46권2호
    • /
    • pp.65-74
    • /
    • 2009
  • 신경망의 구조를 최적화하기 위해서는 노드 또는 연결을 잘라내는 가지치기 방법과 노드를 추가해 나가는 구조 증가 방법이 있다. 이 논문은 신경망의 구조 최적화를 위해 가지치기 방법을 사용하며, 최적의 노드 가지치기를 찾기 위해 유전 알고리즘을 사용한다. 기존 연구에서는 입력층과 은닉층의 노드를 따로 최적화 대상으로 삼았다 우리는 두 층의 노드를 하나의 염색체에 표현하여 동시 최적화를 꾀하였다. 자식은 부모의 가중치를 상속받는다 학습을 위해서는 기존의 오류 역전파 알고리즘을 사용한다. 실험은 UCI Machine Learning Repository에서 제공한 다양한 데이터를 사용하였다. 실험 결과 신경망 노드 가지치기 비율이 평균 $8{\sim}25%$에서 좋은 성능을 얻을 수 있었다. 또한 다른 가지치기 및 구조 증가 알고리즘과의 교차검증에 대한 t-검정 결과 그들에 비해 우수한 성능을 보였다.

Bilinear map 기반 센서네트워크 보안프로토콜을 위한 Pairing용 곱셈 최적화 기법 (Optimization of multiplication-techniques for a Pairing for sensor network security protocol based on bilinear map)

  • 서화정;이동건;김호원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(A)
    • /
    • pp.166-170
    • /
    • 2010
  • 센서네트워크는 유비쿼터스 환경을 실현할 수 있는 기술로서, 최근 무인 경비 시스템이나 에너지 관리, 환경 모니터링, 홈 자동화, 헬스케어 응용 등과 같은 다양한 응용 분야에 활용되고 있다. 하지만 자신의 정보가 무선통신상에 쉽게 노출됨으로써 도청과 전송 메시지에 대한 위변조, 서비스 거부 공격을 받을 위험이 있다. 더욱이 센서네트워크의 자원 제약성(적은 메모리, 컴퓨팅 성능의 제약)과 키분배 관리의 어려움으로 인해 기존의 공개키, 대칭키 기반의 면안프로토콜을 대체할 수 있는 프로토콜이 필요하다. 그러므로 키분배 관리에 장 접을 가지는 Bilinear map 기반 프로토콜은 적합한 대안이다. 하지만 프로토콜에 사용되는 Pairing연산은 높은 컴퓨팅 성능이 요구된다. 따라서 제한된 성능을 가진 센서상의 구현을 위해서는 Computation Cost를 줄이고 연산 수행 속도를 가속화 할 필요성이 있다. 본 논문에서는 프로토콜 구현에 필요한 Pairing의 핵심 연산인 Multiplication을 대표적인 센서노드 프로세서인 MSP430상에서 최적화 구현함으로써 성능을 개선한다.

  • PDF

IPv6 Multicast 네트워크에서 QoS 적용과 Security보장을 위한 최적화 연구 (A study on Optimization of Using QoS and Ensuring the Security in IPv6 Multicast Network)

  • 김영래;이효범;민성기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.913-916
    • /
    • 2008
  • TPS(Triple Play Service)를 통한 IP-TV,인터넷, 전화 등이 통합되는 추세에서, IPv6 상용네트워크가 수 년 안에 구축될 필연성을 공감하고 있다. 그러나 [1] 현재 IP-TV 서비스에서 Delay, Jitter,전송장애등 QoS에 대한 사용자 불만이 계속 발생하고 있다. 또한 현재 서비스중지 (DoS : Denial of Service)를 유발하는 [2] 인터넷 침해 사고가 월 평균 2157건 이상 발생하는 등, Security Issue의 증가 문제가 지속 되고 있다. IPv4/IPv6 듀얼 스택 멀티 캐스트 네트워크를 구현하여, 라우팅, 멀티캐스트(PIM-SM), QoS, Security 이슈에 대한, 최적의 방안을 도출하여, 라우팅 구현시 IPv6 라우팅 프로토클 간에 재분배(Redistribution) 장애 해결책, IPv6 특성에 따른 멀티캐스트 그룹주소 지정시의 장애대책을 제시하였고, QoS 에서는 기존의 QoS 정책의 문제점과 IPv6의 고유한 패킷 구조의 장점을 활용한 Adaptive QoS 방법을 제시하고, IPv6 멀티캐스트 서비스 중지 공격 유형을 정의하여, 최적화된 IPv6 멀티캐스트 구성 모델을 제시 하였다. 결론적으로 구현된 시스템에서 IPv6 패킷 분석을 통해서 최적화된 경로 통신 및 차별화된 IPv6 패킷의 QoS 방안을 제시하였으며, 서비스 중지공격을 대응하는 Security 보장성을 갖고 있음을 검증하여, 향후 상용화된 IPv4/IPv6 네트워크 구현을 위한 최적화 방안을 제시 하였다.

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.

ANN-Incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete

  • Wu, Dizi;LI, Shuhua;Moayedi, Hossein;CIFCI, Mehmet Akif;Le, Binh Nguyen
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.281-291
    • /
    • 2022
  • Surmounting complexities in analyzing the mechanical parameters of concrete entails selecting an appropriate methodology. This study integrates a novel metaheuristic technique, namely satin bowerbird optimizer (SBO) with artificial neural network (ANN) for predicting uniaxial compressive strength (UCS) of concrete. For this purpose, the created hybrid is trained and tested using a relatively large dataset collected from the published literature. Three other new algorithms, namely Henry gas solubility optimization (HGSO), sunflower optimization (SFO), and vortex search algorithm (VSA) are also used as benchmarks. After attaining a proper population size for all algorithms, the Utilizing various accuracy indicators, it was shown that the proposed ANN-SBO not only can excellently analyze the UCS behavior, but also outperforms all three benchmark hybrids (i.e., ANN-HGSO, ANN-SFO, and ANN-VSA). In the prediction phase, the correlation indices of 0.87394, 0.87936, 0.95329, and 0.95663, as well as mean absolute percentage errors of 15.9719, 15.3845, 9.4970, and 8.0629%, calculated for the ANN-HGSO, ANN-SFO, ANN-VSA, and ANN-SBO, respectively, manifested the best prediction performance for the proposed model. Also, the ANN-VSA achieved reliable results as well. In short, the ANN-SBO can be used by engineers as an efficient non-destructive method for predicting the UCS of concrete.