• Title/Summary/Keyword: Optimality Conditions

Search Result 146, Processing Time 0.026 seconds

Design of Singularly Perturbed Delta Operator Systems with Low Sensitivity (낮은 민감도를 지니는 특이섭동 델타연산자 시스템의 설계)

  • Shim, Kyu-Hong;Sawan, M.E.;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • A method of designing a state feedback gam achieving a specified insensitivity of the closed-loop trajectory by the singularly perturbed unified system using the operators is proposed. The order of system is reduced by the singular perturbation technique by ignoring the fast mode in it. The proposed method takes care of the actual trajectory variations over the range of the singular perturbation parameter. Necessary conditions for optimality are also derived. The previous study was done in the continuous time system The present paper extends the previous study to the discrete system and the ${\delta}-operating$ system that unifies the continuous and discrete systems. Advantages of the proposed method are shown in the numerical example.

Designing Laser Pulses for Manipulating the Interior Structure of Solids (고체 내부의 구조적 변화를 위한 Laser Pulse의 설계)

  • Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 1995
  • This paper is concerned with the design of optimal surface heating patterns that result in focusing acoustic energy inside a subsurface target volume at a specified target time. The surface of the solid is heated by an incident laser beam which gives rise to shear and compressional waves propagating into the solid. The optimal heating design process aims to achieve the desired energy focusing at the target with minimal laser power densities and minimal system disturbance away from the target. The optimality conditions are secured via the conjugated gradient method and by the finite element method along with using the half-space Green's function matrix. Good quality energy focusing is achived with the optimal designs reflecting the high directivity of the photothermally generated shear wave patterns.

  • PDF

Drug-Coated Balloon Treatment for De Novo Coronary Lesions: Current Status and Future Perspectives

  • Ae-Young Her;Eun-Seok Shin
    • Korean Circulation Journal
    • /
    • v.54 no.9
    • /
    • pp.519-533
    • /
    • 2024
  • The outstanding development in contemporary medicine, highlighted by percutaneous coronary intervention (PCI), was achieved through the adoption of drug-eluting stents (DESs). Although DES is the established therapy for patients undergoing PCI for de novo coronary artery disease (CAD), their drawbacks include restenosis, stent thrombosis, and the requirement for dual antiplatelet therapy (DAPT) with an uncertain duration regarding its optimality. Drug-coated balloon (DCB) treatment leaves nothing behind on the vessel wall, providing the benefit of avoiding stent thrombosis and not necessitating obligatory extended DAPT. After optimizing coronary blood flow, DCB treatment delivers an anti-proliferative drug directly coated on a balloon. Although more evidence is needed for the application of DCB treatment in de novo coronary lesions, recent studies suggest the safety and effectiveness of DCB treatment for diverse conditions including small and large vessel diseases, complex lesions like bifurcation lesions or diffuse or multivessel diseases, chronic total occlusion lesions, acute myocardial infarctions, patients at high risk of bleeding, and beyond. Consequently, we will review the current therapeutic choices for managing de novo CAD using DCB and assess the evidence supporting their concurrent application. Additionally, it aims to discuss future important perspectives.

Studies on the Fermentative Production of Inosine 5'-monophosphate by Microorganisms. (Part II) Effects of Carbon Source and Purine Base on Inosine 5'-monophosphate Accumulation by a Mutant of Brevibacterium ammoniagenes (미생물에 의한 5'-이노신산의 생산에 관한 연구 (제 2보) Brevibacterium ammoniagenes 이변주에 의한 5'-이노신산의 생성에 미치는 탄소원과 Purine염기의 영향)

  • ;;;;Hiroshi Iizuka
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 1981
  • The effect of growth and the carbon sources including the molar ratio of fructose to glucose was studied for the maximization of inosine-5'-monophosphate (5'-IMP) production from Brebibacterium ammoniagenes D-21530. According to experimental results, fructose was more efficient to 5'-IMP accumulation than glucose, while the latter was better for the cell growth than the former. To synchronously use glucose and fructose as carbon source is to optimally control the cell growth and maximum production of 5'-IMP without change of other conditions. The optimal weight percent of fructose to sum of glucose and fructose was 20~40%, and the productivity improvement over the utilization of fructose was about 40%. And also the optimality of purine base such as adenine and guanine were considered. The optimal concentrations of adenine and guanine were near 50㎎/l.

  • PDF

물리적 통신망의 이중연결성을 위한 확장 문제에 관한 연구

  • 이희상;안광모
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.83-86
    • /
    • 1996
  • In this paper we study the problem of augmenting a physical network to improve the topology for new survivable network architectures. We are given a graph G=(V,E,F), where V is a set of nodes that represents transmission systems which be interconnected by physical links, and E is a collection of edges that represent the possible pairs of nodes between which a direct transmission link can be placed. F, a subset of E is defined as a set of the existing direct links, and E/F is defined as a set of edges for the possible new connection. The cost of establishing network $N_{H}$=(V,H,F) is defined by the sum of the costs of the individual links contained in new link set H. We call that $N_{H}$=(V,H,F) is feasible if certain connectivity constrints can be satisfied in $N_{H}$=(V,H,F). The computational goal for the suggested model is to find a minimum cost network among the feasible solutions. For a k edge (node) connected component S .subeq. F, we charactrize some optimality conditions with respect to S. By this characterization we can find part of the network that formed by only F-edges. We do not need to augment E/F edges for these components in an optimal solution. Hence we shrink the related component into a node. We study some good primal heuristics by considering construction and exchange ideas. For the construction heuristics, we use some greedy methods and relaxation methods. For the improvement heuristics we generalize known exchange heuristics such as two-optimal cycle, three-optimal cycle, pretzel, quezel and one-optimal heuristics. Some computational experiments show that our heuristic is more efficient than some well known heuristics.stics.

  • PDF

The Natural Frequency Maximization of Beam Structures by using Modal Strain Energy based Topology Optimization Technique (모드변형에너지를 기저로 하는 위상최적화기법을 사용한 보의 고유진동수 최대화)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.89-96
    • /
    • 2007
  • The fundamental frequency maximization of beam structures is carried out by using strain energy based topology optimization technique. It mainly uses the modal strain energy distributions induced by the mode shapes of the structures. The modal strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The beams with three different boundary conditions are used to investigate the optimum topologies against natural mode shapes. From numerical test, it is found to be that the optimum topologies of the beams produced by the adopted technique have hugh increases in some values of natural frequencies and especially the technique is very effective to maximize the fundamental frequency of the structures.

  • PDF

Optimal Control Scheme for SEIR Model in Viral Communications (Viral 통신에서의 SEIR모델을 위한 최적제어 기법)

  • Radwan, Amr
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1487-1493
    • /
    • 2016
  • The susceptible, exposed, infectious, and recovered model (SEIR) is used extensively in the field of epidemiology. On the other hand, dissemination information among users through internet grows exponentially. This information spreading can be modeled as an epidemic. In this paper, we derive the mathematical model of SEIR in viral communication from the view of optimal control theory. Overall the methods based on classical calculus, In order to solve the optimal control problem, proved to be more efficient and accurate. According to Pontryagin's minimum principle (PMP) the Hamiltonian function must be optimized by the control variables at all points along the solution trajectory. We present our method based on the PMP and forward backward algorithm. In this algorithm, one should integrate forward in time for the state equations then integrate backward in time for the adjoint equations resulting from the optimality conditions. The problem is mathematically analyzed and numerically solved as well.

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화)

  • HONG CHUNG You;LEE JIN UK;PARK JE WOONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

A Stochastic Bilevel Scheduling Model for the Determination of the Load Shifting and Curtailment in Demand Response Programs

  • Rad, Ali Shayegan;Zangeneh, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1069-1078
    • /
    • 2018
  • Demand response (DR) programs give opportunity to consumers to manage their electricity bills. Besides, distribution system operator (DSO) is interested in using DR programs to obtain technical and economic benefits for distribution network. Since small consumers have difficulties to individually take part in the electricity market, an entity named demand response provider (DRP) has been recently defined to aggregate the DR of small consumers. However, implementing DR programs face challenges to fairly allocate benefits and payments between DRP and DSO. This paper presents a procedure for modeling the interaction between DRP and DSO based on a bilevel programming model. Both DSO and DRP behave from their own viewpoint with different objective functions. On the one hand, DRP bids the potential of DR programs, which are load shifting and load curtailment, to maximize its expected profit and on the other hand, DSO purchases electric power from either the electricity market or DRP to supply its consumers by minimizing its overall cost. In the proposed bilevel programming approach, the upper level problem represents the DRP decisions, while the lower level problem represents the DSO behavior. The obtained bilevel programming problem (BPP) is converted into a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Furthermore, point estimate method (PEM) is employed to model the uncertainties of the power demands and the electricity market prices. The efficiency of the presented model is verified through the case studies and analysis of the obtained results.