• Title/Summary/Keyword: Optimal welding

Search Result 361, Processing Time 0.024 seconds

Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding (레이저 이종용접에서의 입열량 변화에 대한 용접특성)

  • Mo Yang-Woo;Shin Byung-Heon;Shin Ho-Jun;Yoo Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding qualify is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

Comparison of Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding (레이저 이종용접에서의 입열량 변화에 대한 용접특성 비교)

  • Shin H.J.;Yoo Y.T.;Shin B.H.;Ahn D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.997-1003
    • /
    • 2005
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding qualify of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and 4m/min of pressure for shielding gas.

  • PDF

A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Lee, Chang-Je;Kil, Byung-Lea
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Finite element analysis for prediction of bead shape of Nd:YAG laser butt welding (Nd:YAG 레이저 맞대기 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Nd:YAG pulse laser welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of butt welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

An Experimental study on Prediction of Back-bead Geometry in Pipeline Using the GMA Welding Process (GMA를 이용한 배관용접의 이면비드 형상예측에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, a variety of welding experiments were carried out to optimize root-pass welding process using GMA process. Based on the experimental results, optimal welding conditions were selected after analyzing correlation between welding parameters and back-bead geometry. Then, effectiveness of empirical models developed was compared and analyzed, and optimized empirical models were finally developed for predicting back-bead by analyzing the main effect of each factor which affects back-bead geometry and their influence on interaction. Also, functions proper for expressing the surface of back-bead were selected using diverse quadratic functions, and back-bead geometry was visualized using empirical models developed and quadratic functions.

Establishment of Conditions for Ultrasonic Welding of Cu sheet (Cu 박판에 대한 초음파 용착 조건 확립)

  • Seo, Jeong-Seok;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.282-287
    • /
    • 2010
  • This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Cu sheet and Cu sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 30% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.