• Title/Summary/Keyword: Optimal treatment conditions

Search Result 780, Processing Time 0.032 seconds

Economic implications of optimal operating conditions in a full-scale continuous intermittent cycle extended aeration system (ICEAS) (실규모 연속유입간헐폭기 공정(ICEAS)에서 최적운전조건이 경제성에 미치는 영향)

  • Yong-jae Jeong;Yun-Seong Choi;Seung-Hwan Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.

A Study on the Degradation Properties of MTBE in Solution using Ultrasound (초음파를 이용한 수용액 속의 MTBE 분해 특성 연구)

  • Kim, Heeseok;Yang, Inho;Oh, Jeill;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.522-529
    • /
    • 2009
  • To supply safe drinking water to areas lacking in water supply and drainage system, such as rural area and military bases in proximity to Demilitarized Zone, effective method for treating organic contaminants such as MTBE is required. This study focuses on seeking optimal conditions for effective degradation of MTBE using a bath type ultrasound reactor. Effectiveness of MTBE degradation by ultrasound is dependent on the frequency, power, temperature, treatment volume, initial concentration, catalyst, etc. In this study the degradation rate of MTBE by ultrasound was proportional to power/unit volume ratio and removal is relatively more efficient for 0.1 mM than for 1 mM of MTBE solution. Efficiency of ultrasound treatment for 1 mM MTBE solution was enhanced under bath temperature of $30^{\circ}C$ compared to $4^{\circ}C$, but the temperature effect was negligible for 0.1 mM MTBE solution. Also for 0.1 mM MTBE solution, effect of catalyst such as $TiO_2$ and $Fe^0$ on treatment speed was negligible, and zeolite even increases the time taken for the degradation. Under these specific experimental conditions of this study, the most determinant factor for degradation rate of MTBE in solution was frequency and power of ultrasound. The results have shown that a continuous ultrasound reactor system can be used for small scale remediation of organically polluted groundwater, under optimal conditions.

Optimal Timing and Duration of Cold Application for Breaking Diapause in Queens of the Bumblebee Bombus ignitus

  • Yoon, Hyung Joo;Lee, Kyeong Yong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.2
    • /
    • pp.51-57
    • /
    • 2014
  • Bumblebees are important pollinators of crops and wildflowers. The Korean native bumblebee, Bombus ignitus, undergoes one generation per year, and induction of artificial hibernation is essential for year-round rearing of the bumblebee. Keeping queens under cold treatment conditions for several mo is an effective method for terminating their diapause and promoting colony development. In the present study, we investigated how the timing and duration of chilling affect the artificial hibernation of B. ignitus queens. In the timing assessment, cold treatment was instituted at 12 d, 40 d, or 100 d after eclosion under a constant temperature of $5^{\circ}C$ and 80% humidity. The queens that entered cold treatment at 12 d after emergence evidenced the highest survival rates: 86.7% at two mo, 73.3% at three mo, and 46.4% at 4 mo. Survival rates were reduced under storage conditions at 12 d, 40 d, and 100 d after emergence. When queens were subjected to chilling at 8 d, 12 d, or 16 d after eclosion with constant 80% humidity, the queens stored at 12 d after eclosion exhibited the highest survival rates, which were 84.6 at one mo, 25.0% at two mo, and 7.9% at three mo. In regards to the duration of the cold period, the queens that hibernated for at least two mo evidenced optimal colony development rates. The rates of oviposition, colony foundation, and progeny-queen production of queens hibernated for two mo were 60.0%, 30.0%, and 13.3%, respectively. These values were 6.0 to 13.3 times higher than those in the queens that hibernated for 15 d. Therefore, a cold period of at least 2 mo applied 12 d after emergence were found to be the most favorable conditions for diapause break in B. ignitus queens.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Water-back-flushing Time and Period (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척 시간 및 주기의 영향)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.7-18
    • /
    • 2009
  • In this study, we used the hybrid module that was composed of granular activated carbons (GAC) packing between module inside and outside of tubular ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. We were investigated effect of water-back-flushing time (BT) and water-back-flushing period (FT) to minimize membrane fouling and to enhance permeate flux (J) in the hybrid process, and tried to find the optimal operating conditions. As a result, resistance of membrane fouling ($R_f$) was slightly decreased according to increasing BT. Also, the shorter FT was the more effective to reduce $R_f$ and to enhance J because of frequent water-back-flushing. However, the optimal BT and FT conditions were 10 sec and 8 min respectively when operating costs were considered. Then, the optimal conditions derived from our experiments of modified solution were applied to lake water treatment. As a result, average treatment efficiencies of turbidity, $UV_{254}$ absorbance, and $COD_{Mn}$ were very high as 99.11%, 91.40% and 89.34%, respectively, but that of TDS was low as 30.05%.

The Effect of Second Stage Heat Treatment on Mechanical Properties of TRIP aided Triple Phase Steel (TRIP형 복합조직강판의 기계적 성질에 미치는 2단 열처리 영향)

  • Lee, Y.S.;Kim, Y.S.;Yoon, J.K.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.216-226
    • /
    • 1998
  • Heat treatment conditions and the formation of microstructures were studied for improving the transformation-induced plasticity(TRIP) effect of retained austenite and mechanical properties of Fe-0.2%C-1.5%Si-1.5%Mn sheet steel. An excellent combination of elongation about 30% and high strength over 760MPa was achieved by processing of intercritical annealing and isothermal holding Intercritical annealing the sheet steel produced fine particles($1{\sim}2{\mu}m$) of retained austenite which were stabilized due to C enrichment by subsequent holding in bainite transformation range. Heat treatment conditions were depended on the shape and distribution of second phases as well as the volume fraction and stability of retained austenrte. In this work, the heat treatment condition of optimal strength-elongation balance was obtained by holding the steel at $400^{\circ}C$ for 200sec, after intercritical annealing at $790^{\circ}C$ for 300sec.

  • PDF

The Comparison of Photocatalysis and Sonophotocatalysis for Benomyl Degradation (광촉매공정과 초음파를 접목시킨 광촉매공정에 의한 Benomyl의 분해 비교)

  • An, Sang-Woo;Park, Jae-Hong;Cho, Il-Hyoung;Chang, Soon-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.585-589
    • /
    • 2006
  • Comparison between photocatalysis and sonophotocatalysis were performed in lab-scale experiments for the treatment of benomyl. The effect of operational parameters, i.e., initial benomyl concentration, $TiO_2$ concentration, $H_2O_2$ concentration on the degradation rate of aqueous solution of benomyl has been examined. The optimal conditions for photocatalysis and sonophotocatalysis processes were determined: initial Benomyl concentration was 3 mg/L, the concentration of $TiO_2$ was 2 g/L and $H_2O_2$concentration was 1.5 mM. Under the optimal conditions, sonophotocatalysis was effective for inducing faster degradation of the benomyl.

Response Surface Methodology in Development of Oyster Hydrolysate

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.427-433
    • /
    • 1995
  • The optimal condition for hydrolysis of oyster was evaluated with proteases using response surface methodology(RSM). Among 11 commerical proteases, APLTM 440 was selected as the suitable protease for producing oyster hydrolysate on the basis of cost per unit enzyme activity. The effect of autolysis on degree of hydrolysis in oyster was negligible comparing to that of APL 440 protease treatment. From RSM and ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 9.95, 61.1$^{\circ}C$, 2.64 hr reaction time, 49.2% substrate, and 0.35% enzyme/substrate ratio. Oyster hydrolysate prepared under optimal conditions shwoed virtually 51.98% of hydrolysis.

  • PDF

A Research for Introduction of Graywater Facility on Analysis of Actual Conditions of Sewage Treatment Plant in Daegu City (대구시 하수처리장 운전실태에 따른 중수도 도입 방안 연구)

  • Choi Mi-Young;Na Wook-Ho;Hong Won-Hwa;Kim Sam-Yeul
    • Journal of the Korean housing association
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • It has seen the significant increase of water consumption rate due to rapid industrialization, high-densities of city, and increasing the population; thereby leads further water resource required in near future. In order to solve this deficit there are one of solution that gray water method demonstrates advantages regarding the questions of optimal water utility and thereby master plan of water. The method of study is analysis of investigation data through interview and research of sewage treatment plants in Daegu City. Through these analysis, this paper examines the capacity of graywater and optimal graywater facility.

Optimization of Electrolysis Using Sacrificial Electrode for the Treatment of Electroless Nickel Plating Wastewater (희생전극을 이용한 무전해 니켈 도금 폐수의 전기분해처리 최적화)

  • Kim, Young-Shin;Jeon, Byeong-Han;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.204-209
    • /
    • 2015
  • The effluent limit of nickel from electroplating wastewater has been strengthened from 5 mg/L to 3 mg/L from 2014. However, currently applied treatment process for nickel plating wastewater is unable to meet the effluent limit, most of the treatment concept conducted by treatment plant is dilution with other metal bearing wastewater. This can cause very significant impact to the environment of nickel contamination. With this connection, the feasibility test has been conducted with the use of electrolysis by using sacrificial electrodes. Experiments were conducted in synthetic and electroless nickel plating wastewater. Optimal condition of current density, pH were derived from the synthetic wastewater. It was found that the removal efficiency of nickel exceeded 94% at the operation condition of at pH 9 and the current density of $1{\sim}2mA/cm^2$. At this conditions, the iron sludge was generated very low amount. However, it was unsuccessful to meet the effluent limit by applying these treatment conditions to the real electroplating wastewater. This can be explained due to the matrix effect of other metals and anions contained real electroplating wastewater. From the result of further study, the optimal conditions for the real wastewater treatment were found out to be at pH 9, current density $6{\sim}7mA/cm^2$, for 5 minutes of operating time. At these conditions, 88% removal of nickel was achieved, which results the residual nickel concentration was below 3 mg/L.

Remediation of Diesel Contaminated Soil Using Flowing Subcritical Water (흐름식 아임계수에 의한 경유오염토양의 정화)

  • Li, Guang-Chun;Jung, Sun-Kook;Chung, Seon-Yong;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.10-16
    • /
    • 2011
  • The experimental studies for remediation of diesel contaminated soils were performed using subcritical water in laboratory scale. Contaminated soils from industrial area and artificially contaminated soils were utilized for soil remediation. Experimental system was composed for subcritical water to flow upward through the soil packed column for extracting contaminants. 10 g of contaminated soil was packed into the column and water flow rate was 2 mL/min. To evaluate the effects of temperature, pressure and treatment time on the removal efficiency, temperature was changed from 100$^{\circ}C$ to 350$^{\circ}C$, pressure from 50 bar to 220 bar and treatment time at the predetermined temperature from 0 min to 120 min. The purification efficiency increased as temperature increased. However, the effect of pressure and treatment time was low. Temperature 250$^{\circ}C$, pressure 50 bar and treatment time 30 min were selected for optimal operating condition for this study.