• Title/Summary/Keyword: Optimal treatment conditions

Search Result 780, Processing Time 0.028 seconds

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment

  • Liu, Shuli;Li, Xiangkun;Zhang, Guangming;Zhang, Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1920-1927
    • /
    • 2015
  • This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe2+, Mg2+, Ni2+, and Zn2+ further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe2+ addition.

Dyeability and Functionality of Wool Fabrics Dyed with Zizania latifolia Turcz. extract (줄풀염색에 의한 모직물의 염색성과 기능성)

  • Ko, Eunsook;Lee, Hyesun
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.231-236
    • /
    • 2019
  • This study investigated the proper dyeing conditions, color fastness and functionality of wool fabrics dyed with Zizania latifolia Turcz. We also tried to improve light fastness through treatment with benzophenone ultraviolet absorber. The dyeing of wool fabrics using Zizania latifolia Turcz was good even without pretreatment or mordanting treatment. Optimal wool fabric dyeing conditions were colorant concentration of 200% (o.w.f.), dyeing temperature of $100^{\circ}C$, dyeing time of 80 minutes and a dye bath pH of 3. Color fastness of dyed wool fabrics to washing, rubbing, perspiration and light was 4-5, 5, 4-4-5 (acidic), 4-5 (alkaline) and 2 respectively. The results after treatment with ultraviolet absorber for improving the fastness of daylight were improved to 3-4 grade. The UV protection rate were increased after dyeing and the deodorization of ammonia gas improved to 98%. Bacterial reduction rate (Staphylococcus aureus) of wool fabrics was excellent at 99.9%. All dye fastness (except for light fastness) was excellent; in addition, the functionality of wool fabrics dyed with Zizania latifolia Turcz also improved. The results are expected to be applied to various fields because they indicate excellent results after treatment with ultraviolet absorber for improving the fastness of daylight.

Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation (목재의 치수안정성과 내후성 개선을 위한 열처리 가공에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.457-476
    • /
    • 2016
  • This was investigated on the major issues and research trends regarding the heat-treatment of woods through literature reviews. The principal heat-treatment technologies utilized for industrial purposes include the Plato-process (Netherlands), the Retification process (France), the OHT-process (Germany), and the Thermowood Process (Finland). Factors that mainly influence the heat-treatment process are the wood species, process temperature, processing time, and the heating medium (air, steam, vacuum, N2, oil, etc.). Researches on investigating the optimal conditions with these process conditions being the variables stand as the mainstream. Heat-treated woods present dimensional stability improvement, but mass loss and strength reduction, a wide variations for decaying inhibition, and insufficient resistance against mold, wood borer, and termites. For further improvement in respects of durability or resistance to biological degradation, necessity to search for more suitable heat treatment process and processing conditions fit for each wood species has been suggested. Exploiting new ways to utilize heat-treated wood and extending its range of use have been considered to be important matters that need more effort put into for the sustainable and sound environment as well as saving the wood resources.

Physicochemical Quality Changes in Chinese Cabbage with Storage Period and Temperature: A Review

  • Shim, Joon-Yong;Kim, Do-Gyun;Park, Jong-Tae;Kandpal, Lalit Mohan;Hong, Soon-jung;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • Background: Recent inquiries into high-quality foods have discussed the importance of the functional aspects of foods, in addition to traditional quality indicators such as color, firmness, weight, trimming loss, respiration rate, texture, and soluble solid content. Recently, functional Chinese cabbage, which makes up a large portion of the vegetables consumed in Korea, has been identified as an anticancer treatment. However, the investigation of practical issues, such as the effects of storage conditions on quality indicators (including functional compounds), is still limited. Purpose: We reviewed various studies on variations in the quality indicators and functional compounds of Chinese cabbage in response to different storage environments, focusing on storage temperature and storage period. In particular, we emphasized the effect of storage temperature and storage period on glucosinolate (GSL) levels, in order to provide guidelines for optimizing storage environments to maximize GSLs. Additionally, we used response surface methodology to propose experimental designs for future studies exploring the optimal storage conditions for enhancing GSL contents. Review: Large variations in quality indicators were observed depending on the cultivar, the type of storage, the storage conditions, and the harvest time. In particular, GSL content varied with storage conditions, indicating that either low temperatures or adequate air composition by controlled atmospheric storage may preserve GSL levels, as well as prolonging shelf life. Even though genetic and biochemical approaches are preferred for developing functional Chinese cabbage, it is important to establish a practical method for preserving quality for marketability; a prospective study into optimal storage conditions for preserving functional compounds (which can be applied in farms), is required. This may be achievable with the comprehensive meta-analysis of currently published data introduced in this review, or by conducting newly designed experiments investigating the relationship between storage conditions and the levels of functional compounds.

Effect of Seed Treatment on Improved Germinability of Agastache rugosa O. Kuntze (배초향 종자처리가 발아성 향상에 미치는 영향)

  • Joo, Hyeong-Gyu;Lee, Jung-Eun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • This study was carried out to establish optimal conditions for breaking dormancy of Agastache rugosa O. Kuntze seeds. A series of experiments according to seed maturity and treatment with plant growth regulators were performed to improve germination percentage and synchronize germination of the seeds. In addition, it was conducted to test whether the useful effect of seed treatment before sowing leads to healthy seedling and early vigorous growth. The average seed size was 1.85 mm (length) × 0.82 mm(width). The seed size was much smaller than other vegetable seeds. Seeds colorappeared dark brown, the shape of the seeds was oval and the weight of 1,000seeds was 352.8 mg. The optimum germination temperature was 22℃. Light exposure during germination did not affect germination promotion, suggesting that A. rugosa seeds are a kind of dark germinating seeds. Seed dormancy lasted for 40 days after harvesting, and GA3 treatment of dormant seeds could break dormancy. There were significant differences in germination percentage and rate according to the maturity of seeds. The germination percentage of mature seeds was 10 - 18% higher than that of immature seeds, and germination rate was 2 days faster. GA3 treatment during growth regulator treatment improved germinability, but BAP or ethephone treatment did not. The optimal growth regulator concentration of for germination was the combination treatment of 100 mM GA3 + 100 mM BAP.

Preparation of Expanded Graphite using Perchloric Acid and It's Application as Anode Materials for High Power Li-ion Secondary Battery (과염소산을 이용한 팽창흑연의 제조 및 고출력 리튬이온전지 음극재로의 응용)

  • Park, Yul-Seok;Zheng, Hua;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with $HClO_4$ as a intercalation agents and $KMnO_4$ as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at $1000^{\circ}C$. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.

Development of Automatic Decision System for Chlorination Demand in Water Treatment Plant (정수장내 염소요구량 자동결정시스템 개발)

  • Oh, Sueg-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.757-764
    • /
    • 2002
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control for real time because the sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system, this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these experimental results, we will revise the system and the revised system is enable to optimal control of chlorination dosage. Finally, we have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

Basic Design Work of Ozone-Contactor for Advanced Oxidation Treatment (오존산화분해를 위한 오존접촉조의 기본설계 연구)

  • 박영규;이동훈
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.14-24
    • /
    • 2000
  • The water treatment by ozone was performed to remove VOC and organic substances in the multistage ozone contactor. This paper is secondary paper about the theme of ozone treatment since the first paper (Kor. Sanitary J., 15, 1(2000)) publicized, it was compared experimental results with theoretical those which were derived from the mathematical model associated with chemical reactions and mass transfer. Basic designing factors were determined as an optimal conditions for the removal rate of VOCs as follows: ozone input concentration in the contactor was 2mg/L, ozone contact time was 7 min and number of contactor was three-layered.

  • PDF