• 제목/요약/키워드: Optimal strengthening

검색결과 85건 처리시간 0.023초

${\mu}$-GA에 의한 RC 중공슬래브교의 최적보강 (Optimal strengthening in RC Hollow Slab Bridges using ${\mu}$-GA)

  • 최세휴;박경식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.169-178
    • /
    • 2010
  • 본 연구에서는 RC 중공슬래브교의 내하력을 향상시키기 위한 외부 프리스트레싱을 이용한 보강에 있어서 마이크로 유전알고리즘(${\mu}$-GA)을 이용한 최적보강방법을 제시하였다. 최적보강을 위한 보강 유형으로 Queen-post 유형과 King-post 유형이 고려되었다. 마이크로 유전알고리즘을 이용하여 RC 중공슬래브교의 최적보강을 위한 보강 유형과 편향재, 긴장재 면적, 필요한 앵커 개수 등을 산정 하였다. 목적함수는 보강에 사용된 긴장재와 강재비용을 무차원화하여 구성하였으며, 제약조건은 교량과 앵커설계를 위한 시방서 내용을 고려하여 형성하였다. RC 중공슬래브교의 보강설계를 실시한 후 그 결과를 분석하여 제안된 방법의 타당성을 제시하였다.

외부 프리스트레싱을 이용한 RC 중공슬래브교의 최적보강 (Optimal Strengthening in RC Hollow Slab Bridges Using External Prestressing)

  • 박경식;최세휴
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권6호통권58호
    • /
    • pp.204-211
    • /
    • 2009
  • 본 연구에서는 RC 중공슬래브 교량의 내하력을 향상시키기 위해 외부 프리스트레싱을 이용한 보강방법을 제시하였다. 효과적인 보강을 위해 Queen-post 형식과 King-post 형식이 고려되었으며, 축차무제 약 최소화 기법(SUMT)를 이용하여 목표 내하율을 달성하기 위한 최적의 형상과 긴장력을 구하였다. 최적보강을 위한 목적함수는 재료비용을 무차원화한 비용함수로 구성하였으며, 제약조건은 시방서 규정과 내하율을 고려하여 형성하였다. RC 중공슬래브 교량의 보강을 실행한 후 그 결과를 분석하여 제안된 방법의 타당성을 제시하였다.

Optimal location of a single through-bolt for efficient strengthening of CHS K-joints

  • Amr Fayed;Ali Hammad;Amr Shaat
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.61-75
    • /
    • 2024
  • Strengthening of hollow structural sections using through-bolts is a cost-effective and straightforward approach. It's a versatile method that can be applied during both design and service phases, serving as a non-disruptive and budget-friendly retrofitting solution. Existing research on axially loaded hollow sections T-joints has demonstrated that this technique can amplify the joint strength by 50%, where single bolt could enhance the strength of the joint by 35%. However, there's a gap in understanding their use for K-joints. As the behavior of K-joints is more complex, and they are widely existent in structures, this study aims to bridge that gap by conducting comprehensive parametric study using finite element analysis. Numerical investigation was conducted to evaluate the effect of through bolts on K-joints focusing on using single through bolt to achieve most of the strengthening effect. A full-scale parametric model was developed to investigate the effect of various geometric parameters of the joint. This study concluded the existence of optimal bolt location to achieve the highest strength gain for the joint. Moreover, a rigorous statistical analysis was conducted on the data to propose design equations to predict optimal bolt location and the corresponding strength gain implementing the verified by finite element models.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - Sprayed FRP를 구성하는 재료특성에 관한 연구 - (Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Material Property of Sprayed FRP -)

  • 이리형;이강석;손영선;변인희;임병호;나정민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.141-144
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of Sprayed FRP, this study carried out tensile tests of the material specimens which are changed with the combinations of various variables such as the length of shot fiber and mixture ratio of shot fiber and resin. These variables are set to have the material strength equal to one layer of the FRP sheet. As a result, the optimal length of glass and carbon shot fibers were derived into 3.8cm, and the optimal mixture ratio was also deriver into 1:2 from each variable. And also, the thickness of Sprayed FRP to have the strength equal to one layer of FRP sheet was finally calculated.

  • PDF

자동차 범퍼빔 경량화를 위한 레이저 빔 조사 강화(I) (Laser Beam Irradiation Strengthening for Weight Reduction of Automobile Bumper Beam (I))

  • 서정;이제훈;오상진;이문용;이규현
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.228-234
    • /
    • 2002
  • The CO$_2$ laser beam irradiation strengthening of 35kgf/mm$_2$ grade steel sheet is investigated to reduce the weight of bumper beam. The increase of tensile strength is dominated by the number of fully penetrated melting lines. The optimal laser irradiation pattern is obtained by 3-point bending test of hat-type specimens. Laser should be irradiated not only on the center specimen densely in the width direction, but also on the edge densely in the longitudinal direction. Local laser strengthening may be effective for the weight reduction of automobile bumper beam.

자동차용 강판의 $CO_2$ 레이저 빔 조사 강화 (Strengthening of Steel Sheets for Automobile by $CO_2$ Laser Beam Irradiation)

  • 서정;이제훈;김정오;오상진;조원석;이두환;신철수
    • 한국레이저가공학회지
    • /
    • 제4권2호
    • /
    • pp.21-28
    • /
    • 2001
  • The laser strengthening of 35kgf/㎟ and 60kgf/㎟ grade steel sheets is investigated by using CO$_2$ laser beam irradiation. The increase of tensile strength is dominated by the number of fully penetrated melting line. Also. the optimal laser input energy(hardness) and the number of melting line (melting width) are important variables for laser strengthening. Local strengthening by laser beam may be effective for the weight reduction of components where the tailored welded blank can not be applied.

  • PDF

NSM보강 RC보의 보강 상세에 대한 해석 (Analytical Investigation on Strengthening Details of RC Beams Strengthened with NSMR)

  • 강재윤;박영환;박종섭;유영준;정우태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.195-198
    • /
    • 2005
  • To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique analytically, a structural model for the finite element method (FEM) able to simulate accurately the experimental results was determined. Applying the finite element model, parametric analysis was performed considering the groove depth and spacing of CFRP laminates. Analytical study on the groove depth revealed the existence of a critical depth beyond which the increase of the ultimate load becomes imperceptible. Analytical results regard to the spacing of the CFRP laminates showed that comparatively smooth fluctuations of the ultimate load were produced by the variation of the spacing and the presence of an optimal spacing range for which relatively better strengthening efficiency can be obtained. Particularly, a spacing preventing the interference between adjacent CFRP laminates and the influence of the concrete cover at the edges as well as allowing the CFRP laminatesto behave independently was derived.

  • PDF

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

자동차용 $35kgf/\textrm{mm}^2$급 강판의 레이저 강화 (Laser Strengthening of $35kgf/\textrm{mm}^2$ Grade Steel Sheet far Automobile)

  • 서정;이제훈;김정오;오상진;조원석;이두환;신철수;이문용;이규현
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.34-40
    • /
    • 2002
  • The laser strengthening of $35kgf/\textrm{mm}^2$ grade steel sheet is investigated by using $CO_2$ laser beam irradiation. The increase of tensile strength is dominated by the number of fully penetrated melting lines. Also, the optimal laser irradiation pattern is obtained by 3-point bending test. Local laser strengthening clay be effective for the weight reduction of automobile components where the tailored welded blank can not be applied.