• Title/Summary/Keyword: Optimal soil physical quality

Search Result 7, Processing Time 0.023 seconds

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Turfgrass Establishment of USGA Putting Greens Related with Soil Physical Properties (USGA 공법으로 조성된 그린의 토앙물리성과 Bentgrass의 생육)

  • Kweon Dong-Young;Lee Jeong-Ho;Lee Dong-lk;Joo Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • USGA green specification is currently accepted in construction method of Korea. This study was carried out to find the factors influencing growth of turfgrass associated with soil physical properties of soil root-zone on golf green constructed with USGA method. Three putting greens in poor turfgrass and one in good turfgrass condition were selected for investigation on one golf course site at mid-South Korean peninsula. Soil hardness, moisture content, root length, and turf density were measured on-site greens, and soil physical properties and soil chemical properties also analyzed in laboratory. As a result of on-site surveys and soil physical tests in laboratory, soil physical properties were most important factors which influenced on turfgrass growth at tested greens. The results of soil particle analysis on green No. 2, in good turf condition, matched USGA sand particle recommendations. But those greens such as Nos. 1, 11 and 16, in poor putting greens, showed high soil compaction and improper soil particle distribution. Those factors created low leaf density, poor root depth, and higher moisture content compared with lower part of topsoil. Such phenomena caused inadequate turfgrass growth with soil hardening associated with poor drainage. Therefore, declines of soil physical properties associated with improper particle distribution caused a major factor influencing on turfgrass growth in golf green. Adequate test of soil particle analysis by USGA specification and proper construction method followed by adequate turf maintenance should be performed to obtain optimal turf quality on putting green.

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Effect of Compost Application Level on Seedling Growth of Panax ginseng C. A. Meyer

  • Yeon, Byeong-Yeol;Hyun, Dong-Yun;Hyun, Geun-Su;Park, Chun-Geun;Kim, Tae-Soo;Cha, Seon-Woo;Lee, Sung-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.138-141
    • /
    • 2007
  • Good quality seedlings produced in the seedbed of Yangjik, traditional seedling cultivation, is one of the most important factors in determining the yield and quality of $4{\sim}6-year-old$ ginseng. This study was carried out to substitute Yacto, traditional organic fertilizer, for economical compost in the cultivation of seedling by fertilizing relatively little amount of compost into seedbed soil. Bulk density and solid phase were decreased in physical properties of seedbed soil, while air phase and porosity were increased by more addition of compost. When the amount of applied compost in seedbed soil was above $8{\ell}$ per Kan, the contents of nutrient were exceeded the range of optimal standard for ginseng cultivation. Chlorophyll content and stem length were increased by more addition of compost, while the length and the width of leaves showed the highest value at the application level of $8{\ell}$ per Kan. Heat injury was also increased distinctly above the application level of $8{\ell}$ per Kan. The number of first grade seedlings and usable seedlings, and fresh root weight per plant showed the peak at application level of $8{\ell}$ per Kan, respectively. Fertilizing the compost of $8{\ell}$ per Kan into seedbed soil was the optimal amount for producing the good quality seedlings.

Optimal Application Rate of Mixed Expeller Cake and Rice Straw and Impacts on Physical Properties of Soil in Organic Cultivation of Tomato (토마토 유기재배에서 혼합유박과 볏짚의 적정시용량 및 토양 물리성에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Jung, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • BACKGROUND: In this study, 5 different treatments such as non-treatment, mixed expeller cake 1.0 N (standard nitrogen fertilizer), rice straw, rice straw+mixed expeller cake 0.5 N, rice straw+mixed expeller cake 1.0 N were performed over 4 cropping seasons over 2 years in order to identify the optimal application rate of mixture of rice straw and mixed expeller cake, organic source in organic cultivation of tomatoes. METHODS AND RESULTS: There was no difference in all treatments in case of 200 mg/kg in the nitrate nitrogen content in soil prior to the first cropping season test under the criteria for nitrogen nutrient based on yield of crops, cultivation without fertilizers seems possible. But in the second cropping season, no treatment and rice straw showed the reduction of yield and in the third cropping season, rice-straw+mixed expeller cake 0.5 N treatment showed the significant difference. The content of nitrate nitrogen in soil prior to cropping seasons was evaluated in 160 mg/kg and standard fertilization such as mixed expeller cake, source of nitrogen, are needed due to the deficiency of nitrogen. In terms of application of organic resources, rice straw showed the effects of improvements on physical properties of soil such as bulk density, cation exchange capacity and humus contents, but the mixed expeller cake did not show any significant differences in improvements on physical properties of soil. CONCLUSION(s): Fertilizer management in organic cultivation of tomatoes is thought to produce the reliable quantity of crops as well as keep the high quality of soils by using the optimal application rate of mixed expeller cake according to the contents of nitrate nitrogen in soil and rice straw which improves the physical properties of soil.

A Study on the Introduction of Natural Elements in Public places of Nursing Homes - Focusing on ensuring the amenity of mediation, interaction, and rest places - (노인요양시설 공용공간의 자연요소 도입에 관한 연구 - 매개, 교류, 휴식공간의 쾌적성 확보를 중심으로 -)

  • Jun, Myung-Sook;Choi, Sang-Hun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.1
    • /
    • pp.108-116
    • /
    • 2009
  • As an aging society accelerates its pace for the present, providing a pleasant environment to nursing homes is such an environmental requirement with which elderly people could improve their quality of life and even acquire the effects of healing. As an optimal element of ensuring amenity, nature is a general hospital that heals human beings physically and mentally. In this vein, the investigator drew out the frame of analysis, namely emotional/healing/relating amenity, by means of theoretical examination of such natural elements as water, light, soil/stone, and plant. And on the basis of the drawn amenity, the investigator examined the application of natural elements to study subjects in order to analyze the ensured amenity. Study findings show that the existing nursing homes have ensured healing amenity sufficiently, but they are unsatisfactory in ensuring emotional and relating amenity. Based on interview survey, the investigator suggests that the introduction of natural elements into nursing homes such public space as mediation space, interaction space, and rest places to ensure emotional/healing/relating amenity must be ideally equipped with the formation of outdoor forest in which water, light, soil/stone, and plant get joined together, rather than Introducing a single element respectively. In addition, the plan of construction of nursing homes must take residing elderly people's emotional/healing/relating amenity into account on the basis of physical amenity.

Evaluation of Accuracy and Optimization of Digital Image Analysis Technique for Measuring Deformation of Soils (흙의 변형 측정을 위한 디지털 이미지 해석 기법의 최적화 및 정확도 평가)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.5-16
    • /
    • 2011
  • Digital image analysis techniques have been developed and utilized in the field of solid mechanics and fluid mechanics to measure the deformation and velocity of a target object. The deformation measurement systems based on Particle Image Velocimetry (PIV) and Digital Image Correlation (DIC) have been attempted in geotechnical testings (e.g., physical model tests) for observing the deformation of soils. The digital image analysis is influenced by image pattern of test materials, resolution of the used digital camera, target area, image analysis techniques, and analysis conditions. Therefore, optimal analysis conditions should be determined to obtain high quality results on soil deformations. In the present study, various influence factors on the digital image analysis were described and summarized. The optimizing procedure for high accurate results was then proposed. Finally, the applicability of the developed procedure was examined.