• Title/Summary/Keyword: Optimal section shape

Search Result 97, Processing Time 0.025 seconds

Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members (모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Kim, Yeong-Nam;Kim, Jeong-Ho;Kim, Seon-Gyu;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

Designing of Safe Duct for Leisure Boat with Wing Section (익형 형상을 적용한 레저 선박용 안전 덕트 개발)

  • Sang-Jun Park;Jin-Wook Kim;Moon-Chan Kim;Woo-Seok Jin;Sa-Kyo Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

Stiffness-based Optimal Design of Shear Wall-Frame Structure System using Sensitivity Analysis (민감도 해석을 이용한 전단벽-골조 구조시스템의 강성최적설계)

  • Lee Han-Joo;Kim Ho-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.63-71
    • /
    • 2006
  • This study presents the effective stiffness-based optimal technique to control Quantitatively lateral drift for shear wall-frame structure system using sensitivity analysis. To this end, the element stiffness matrices are constituted to solve the compatibility problem of displacement degree of freedom between the frame and shear wall. Also, lateral drift constraint to introduce the approximation concept that can preserve the generality of the mathematical programming and can effectively solve the large scaled problems is established. And, the section property relationships for shear wall and frame members are considered in order to reduce the number of design variables and differentiate easily the stiffness matrices. Specifically, constant-shape assumption which is uniformly varying in size during optimal process is applied in frame structure. The thickness or length of shear wall can be changed depending on user's intent. Two types of 20 story shear wall-frame structure system are presented to illustrate the features of the stiffness-based optimal design technique.

An Optimal Aerodynamic and RCS Design of a Cruise Missile (공력 및 RCS 해석 기반의 순항 유도탄 최적설계)

  • Yang, Byeong-Ju;Song, Dong-Gun;Kang, Yong-Seong;Jo, Je-Hyeon;Je, Sang-Eon;Kim, Byeong-Kwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.479-488
    • /
    • 2019
  • A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.

Development of the Spent Fuel Rod Cutting Device by Cutter Blade Method (Cutter blade 방식에 의한 사용후핵연료봉 절단 장치 개발)

  • 정재후;윤지섭;홍동회;김영환;김도우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.393-396
    • /
    • 2000
  • Spent fuel rod cutting device should cut a spent fuel rod to an optimal size in order to fast decladding operation. In this paper, for developing spent fuel rod cutting device with cutter blade, rod properties such as dimension and material of zircaloy tube and fuel pellet are investigated at first and then, various methods of existing cutting devices used commercially are investigated and their performance are analyzed and compared. This device is designed to be operated automatically via remote control system considering later use in Hot-Cell (radioactive area) and the mdularization in the structure of this device makes maintenance easy. SUS and Zircaloy-4 are selected as cut material used in the test of spent fuel rod cutting device by cutter blade. In order for constructing the high durable cutter blade, various materials are analyzed in terms of quality, shape, characteristic, and heat treatment, etc. and from these results, spent fuel rod cutting device is designed and manufactured based on the considerations of durability, round shape sustainability of rod cross-section, debris generation, and fire risk, etc.

  • PDF

Calculation of Tensile Load between Roll Stands in Continuous Rolling System considering the Elasto-Plastic Behavior (탄소성 변형을 고려한 연속압연시 롤스탠드간 장력해석)

  • Shin, Nam-Do;Son, Il-Heon;Kang, Gyeong-Pil;Lee, Kyung-Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.286-287
    • /
    • 2008
  • The determination of roll speeds in continuous rolling system is an important factor along with the design of roll profile and roll gap. The tensile force on the workpiece induces reduced cross section area and the compressive force induces wrinkles. To determine the optimal roll speeds of current rough rolling system for wire rod, FE analysis was performed. We could predict the workpiece shape and the stress level more precisely by considering the elasto-plastic behavior of workpiece. Also the efficient analysis methodology is presented to reduce the calculation time by combining the ALE and lagrangian method.

  • PDF

Manufacturing Technique on the U Type Draw-Bending of Inner Groove Tube (Inner groove tube의 U형 Draw-Bending 가공기술에 관한 연구)

  • Kang, H.S.;Kim, D.S.;Hur, S.;Hong, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.148-151
    • /
    • 2003
  • The purpose of this study is to investigate the manufacturing technique on the U type Draw-Bending of inner groove tube. The U type tube requires the quality of product that satisfy sufficient conditions for a heat exchanger. The mandrel components act the important roles that prevent wrinkles and keep the shape of cross section of bended tube at bending process. We performed the FEM simulation using LS-DYNA software and the bending test of inner groove tube and then, compared bending simulation with bending test results about mandrel ball diameter, mandrel position and optimal clearance between mandrel and tube.

  • PDF

The Effect of Reduction of Friction Heat by Micro Dimple on the Sliding Surface of Elastomer (탄성중합체 표면의 마이크로 딤플에 의한 발열저감효과)

  • Kim, Gun Wan;Yoo, Myung Ho;Lee, Taek Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.847-853
    • /
    • 2013
  • Micro-dimples on sliding surfaces have been investigated to reduce the frictional forces on metal bearing surfaces; however, for an elastomer, such as thermoplastic polyurethane (TPU), this has not been studied. The material properties of an elastomer are affected by temperature, and this can shorten the life of the elastomer. In this paper, micro-dimples were applied on the surface of an elastomer in order to reduce the frictional heating, which was experimentally investigated using pin-on-disk apparatus while the surface temperature was measured. To obtain optimal design parameters, the design of the experiment was applied, and the shape of the section, size, depth and density of micro-dimples were selected as the design parameters. The results show that the size of the dimple is the most important design parameter.

The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle (알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계)

  • 김정호;김범진;허승진;김민수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

A Practical Hull Form Optimization Method Using the Parametric Modification Function (파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구)

  • Kim, Hee-Jung;Choi, Hee-Jong;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.