• Title/Summary/Keyword: Optimal representative blocks

Search Result 10, Processing Time 0.024 seconds

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Efficient Tracking of a Moving Object Using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Park, Su-Hyeon;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.3-41
    • /
    • 2002
  • Motion estimation using Full-Search(FS) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data because these schemes suffer the heavy computational load. When the image size of moving object is changed in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object may decline with these methods because of the shortage of active handling. In this paper, the variable-representative block that can reduce a lot of data computations, is defined and optimized by changing the size of representative block accor...

  • PDF

The Standardization of Developing Method of 3-D Upper Front Shell of Men in Twenties (20대 성인 남성 상반신앞판현상의 평면 전개를 위한 표준화 연구)

  • Cui, Ming-Hai;Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Fashion & Textile Research Journal
    • /
    • v.9 no.4
    • /
    • pp.418-424
    • /
    • 2007
  • The purpose of this study is to propose a standard of converting 3D shape of men in twenties to 2D patterns. This can be a basis for scientific and automatic pattern making for high quality custom clothes. Firstly, representative 3D body shape of men was modeled. Then the 3D model was divided into 3 shells, front, side and back. Among them, the front shell was divided into 4 blocks by bust line and princess line. Secondly, curves are generated on each block according to matrix combination by grid method. Then triangles were developed into 2D pieces by reflecting the 3D curve length. The grid was arranged to maintain outer curve length. Next, the area of developed pieces and block were calculated and difference ratio between the block area and the developed pieces' area is calculated. Also, area difference ratio by the number of triangles is calculated. The difference ratio was represented as graphs and optimal section is selected by the shape of graphs. The optimal matrix was set considering connection with other blocks. Curves of torso upper front shell were regenerated by the optimal matrix and developed into pieces. We validated it's suitability by comparing difference ratio between the block area and the developed pieces' area of optimal section. The results showed that there was no significant difference between block area and the pieces' area developed by optimal matrix. The optimal matrix for 2D developing could be characterized as two types according to block's shape characteristics, one is affected by triangle number, the other is affected by number of raws more than columns. Through this study, both the 2D pattern developing from 3D body shape and 3D modeling from 2D pattern is possible, so it's standardization also possible.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Comparison of Optimal Path Algorithms and Implementation of Block Transporter Planning System (최적 경로 알고리즘들의 계산비용 비교 및 트랜스포터의 최적 블록 운송 계획 적용)

  • Moon, Jong-Heon;Ruy, Won-Sun;Cha, Ju-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.115-126
    • /
    • 2016
  • In the process of ship building, it is known that the maintenance of working period and saving cost are one of the important part during the logistics of blocks transportation. Precise operational planning inside the shipyard plays a big role for a smooth transportation of blocks. But many problems arise in the process of block transportation such as the inevitable road damage during the transportation of the blocks, unpredictable stockyard utilization of the road associated with a particular lot number, addition of unplanned blocks. Therefore, operational plan needs to be re-established frequently in real time for an efficient block management. In order to find the shortest path between lot numbers, there are several representative methods such as Floyd algorithm that has the characteristics of many-to-many mapping, Dijkstra algorithm that has the characteristic of one-to-many mapping, and the A* algorithm which has the one-to-one mapping, but many authors have published without the mutual comparisons of these algorithms. In this study, some appropriate comparison have been reviewed about the advantages and disadvantages of these algorithms in terms of precision and cost analysis of calculating the paths and planning system to operate the transporters. The flexible operating plan is proposed to handle a situation such as damaged path, changing process during block transportation. In addition, an operational algorithm of a vacant transporter is proposed to cover the shortest path in a minimum time considering the situation of transporter rotation for practical use.

A Study on the Performance Improvement of Incomplete Fingerprint Classification using an Adaptive Core Block Based on Markov Models (마코프 모델 기반 적응적 중심블록을 이용한 불완전한 지문의 분류 성능 향상에 관한 연구)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1005-1010
    • /
    • 2012
  • We propose a novel approach to classify fingerprints using the extracted adaptive core block for improving classification performance of incomplete fingerprints in this paper. We compute representative directions from fingerprint images by the block unit and learn horizontal and vertical Markov models by deciding the center position of a fingerprint image based on the expert knowledge. The center block of a test image is the block has the highest probability after comparing the Markov model with $11{\times}11$ blocks. The proposed approach can effectively classify incomplete fingerprints using the optimal center block.

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.