• Title/Summary/Keyword: Optimal regulator

Search Result 238, Processing Time 0.023 seconds

Optimal Packet Scheduling Algorithms for Token-Bucket Based Rate Control

  • Mehta Neerav Bipin;Karandikar Abhay
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.65-75
    • /
    • 2005
  • In this paper, we consider a scenario in which the source has been offered QoS guarantees subject to token-bucket regulation. The rate of the source should be controlled such that it conforms to the token-bucket regulation, and also the distortion obtained is the minimum. We have developed an optimal scheduling algorithm for offline (like pre-recorded video) sources with convex distortion function and which can not tolerate any delay. This optimal offline algorithm has been extended for the real-time online source by predicting the number of packets that the source may send in future. The performance of the online scheduler is not substantially degraded as compared to that of the optimal offline scheduler. A sub-optimal offline algorithm has also been developed to reduce the computational complexity and it is shown to perform very well. We later consider the case where the source can tolerate a fixed amount of delay and derive optimal offline algorithm for such traffic source.

Adaptive Control of Cell Recycled Continuous Bioreactor for Ethanol Production (에탄올 생산을 위한 세포재순환 연속 생물반응기의 적응제어)

  • 이재우;유영제
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.263-270
    • /
    • 1991
  • The optimal cell concentration and dilution rate for maximum ethanol productivity were obtained using dynamic simulation in cell recycled continuous bioreactor. The good control performance was observed using rule-based STR (self-tuning regulator) compared to conventional STR. Rule-base contained the scheme to implement the STR in an efficient on-off way and the scheme for the controlled variable to reach the optimal value in a short time. Since a mathematical model was used to analyze and estimate the changes of the state variables and the parameters, it was possible to understand the physical meaning of the system.

  • PDF

OPTIMAL LQ CONTROL OF BUCK SWITCHING REGULATOR (스위칭 레귤레이터의 최적 LQ 제어)

  • Yoo, K.S.;Kwon, O.K.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.401-404
    • /
    • 1989
  • In this paper an optimal LQ controller is designed for the output characteristic improvement of buck-type switching regulators. State-space averaging method is adopted for modelling of switching regulators. The LQ controller is derived via an unified operator form for the application to both continuous-time and discrete-time control systems. Some design parameters of the LQ controller are chosen through a computer simulation and the LQ controller is implemented by analog circuits.

  • PDF

A new approach to the optimal control problem including trajectory sensitivity

  • Ishihara, Tadashi;Miyauchi, Takashi;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1049-1054
    • /
    • 1990
  • We formulate optimal quadratic regulator problems with trajectory sensitivity terms as a optimization problem for a fixed controller structure. Using well-known techniques for parametric LQ problems, we give an algorithm to obtain suboptimal feedback gains by iterative solutions of two Lyapunov equations. A numerical example is given to illustrate the effectiveness of the proposed algorithm.

  • PDF

Sliding Mode Control for Time-delay System using Virtual State (가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

Smoothing DRR: A fair scheduler and a regulator at the same time (Smoothing DRR: 스케줄링과 레귤레이션을 동시에 수행하는 서버)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2019
  • Emerging applications such as Smart factory, in-car network, wide area power network require strict bounds on the end-to-end network delays. Flow-based scheduler in traditional Integrated Services (IntServ) architecture could be possible solution, yet its complexity prohibits practical implementation. Sub-optimal class-based scheduler cannot provide guaranteed delay since the burst increases rapidly as nodes are passed by. Therefore a leaky-bucket type regulator placed next to the scheduler is being considered widely. This paper proposes a simple server that achieves both fair scheduling and traffic regulation at the same time. The performance of the proposed server is investigated, and it is shown that a few msec delay bound can be achieved even in large scale networks.

선형 다변수 시스템의 강인한 최적 안정기의 설계

  • 이재혁;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.467-472
    • /
    • 1989
  • In this study, a design method to obtain a robust optimal regulator for linear multivariable system is presented. When assigning eigenvalues of linear multivatiable system , the feedback gain is not unique. So we can assign robustness index to optimality so that we can fully use the remained degree of freedom.

  • PDF

Optimal Feedforward Frequency Control for Hydro-Power Stations in Power Systems (전력시스템에서 수력발전소에 대한 최적 피이드포워드 주파수 제어)

  • Tak, Hyun-Soo;Ryu, Chang-Sun;Ahn, Tea-Chon;Lee, Jong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.744-747
    • /
    • 1991
  • In this paper, the design of optimal feedforward regulators with the optimal feedforward filters for improving power frequency deviations in an interconnected system, using a polynominal LQG approach, is proposed. The performances of the regulators with the optimal feedforward filters were compared with the frequency feedback regulator only in power system by simulation. The results show that the optimal feedforward regulators reduce the power frequency standard deviation by 25%-60% in the white noise load and the peak deviation in the step load by 8%-27%.

  • PDF

A Study on the Coordination Control Algorithm of Step Voltage Regulator and Battery Energy Storage System for Voltage Regulation in Distribution System (배전계통의 전압안정화를 위한 선로전압조정장치와 전지전력저장장치의 협조제어 알고리즘에 관한 연구)

  • Kim, Byung-Ki;Wang, Jong-Yong;Park, Jea-Bum;Choi, Sung-Sik;Ryu, Kyung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.269-278
    • /
    • 2016
  • In order to maintain customer voltages within allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) installed in distribution system is very important, considering the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(Battery Energy Storage System) during the delay time of SVR is being required because the customer voltages in distribution system interconnected with PV(Photovoltaic) system have a difficultly to be kept within allowable limit. Therefore, this paper presents the optimal voltage stabilization method in distribution system by using coordination operation algorithm between BESS and SVR. It is confirmed that customer voltage in distribution system can be maintained within allowable limit($220{\pm}13V$).