• Title/Summary/Keyword: Optimal ratio

Search Result 3,982, Processing Time 0.033 seconds

Mean Estimation in Two-phase Sampling (이중추출에서 모평균 추정)

  • 김규성;김진석;이선순
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • In this paper, we investigated mean estimation methods in two-phase sampling. Under the fixed expected cost we reviewed the optimal sample sizes, minimum variances and approximate unbiased variance estimators for usual ratio estimator, stratified sample mean with proportional allocation and Rao's allocation of the second phase sample. Also we proposed combined ratio estimator, which uses both ratio estimation and stratification and derived optimal sample size, minimum variance and unbiased variance estimator. Through a limited simulation study, we compared estimators by design effects and came to know that ratio estimator is more efficient than stratified sample mean in some cases and inefficient in the other cases, but combined ratio estimator is more efficient than others in most cases.

  • PDF

A Study on the Optimal Method of Eco-Friendly Recycling through the Comparative Analysis of the Quantitative Calculation and Scope of Recycling

  • Seung-jun WOO;Eun-gyu LEE;Chul-hyun NAM;Kang-hyuk LEE;Woo-Taeg KWON;Hee-Sang YU
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The purpose of this study is to present an efficient emission reduction ratio of plastic to reduce carbon dioxide, the main cause of greenhouse gases. Research design, data and methodology: This study calculated the absolute value of carbon dioxide by setting an equation through the emission coefficient using the US EPA's WARM model. Results: In the recycling ratio of 70%, it was found that the energy recovery ratio was 15.6%, which was the energy recovery ratio without generating carbon dioxide. When carbon dioxide is generated by changing plastic waste emissions, optimal efficiency is achieved by reducing emissions by 10% to 30% of energy recovery ratio, 20% to 50% of energy recovery ratio, and 30% to 80% or more of energy recovery ratio. Conclusions: The recycling rate should be set at a minimum of 70%, so that a carbon dioxide-free energy recovery rate could be obtained during the recycling process, supporting an eco-friendly basis for environmental policies aimed at this rate. In addition, it was possible to suggest that it is essential to reduce emissions by at least 30% for eco-friendly recycling measures that can achieve both economic and environmental feasibility in the energy recovery process through incineration during recycling in Korea.

Machine Learning-Based Retrofit Scheme Development for Seismically Vulnerable Reinforced Concrete School Buildings (기계학습기반 기둥 파괴유형 분류모델을 활용한 학교건축물의 내진보강전략 구축)

  • Kim, Subin;Choi, Insub;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.275-283
    • /
    • 2024
  • Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.

A Study on the Removal of Refractory Organic Matter in Leachate sampled at Kimpo Landfill by means of Fenton Oxidation Process (Fenton 산화를 이용한 김포매립지 침출수내 난분해성)

  • 정동환;조일형;김익수;한인규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.49-57
    • /
    • 2000
  • This study was carried out to find the optimal condition to treat refractory organic matter which can’t treat clearly with biological treatment and to find the optimal division dosage and division dose timing in the modification of Fenton oxidation which is used resolve the problem that hydrogen peroxide is too expensive. The results are following; 1. The highest TOC removal efficiency was 41% and color removal efficiency was 64% when the dilution magnitude of leachate is fold. This suggests that dilution is efficiency when high concentration of leachate is treated. 2. The removal efficiency of TOC and color increased up to the molar ratio between ferrate and hydrogen peroxide was 1:1. However above that ratio, removal efficiency hardly increased. The highest removal efficiency of TOC and color were 38% and 71% when the mole ratio of ferrate to hydrogen peroxide was 1.5:1. 3. When the mole ratio between ferrate and hydrogen peroxide was fixed, the removal efficiency of TOC and color increased as the dosage of hydrogen peroxide increased. 4. pH of samples were adjusted at pH 3, 5, 7, 9, 11. After oxidation reaction, pH of samples were dropped to 2.59, 2.54, 5.34, 6.36 and 9.68. The highest color removal efficiency was 75.7% when initial pH was at pH 7. 5. The removal of TOC and color was ended within 10. min. and the removal efficiency increased logarithmically within 10min. However after 10 min., the removal efficiency of hardly increased. 6. The color removal efficiency was higher with modification of fentone oxidation than that with fentone oxidation by 5%. Optimal division dosage ratio was 1:1 and optimal dose timing ratio was 2:1. However the TOC removal efficiency was not higher with modification of Fenton oxidation than that with Fenton oxidation.7. The CO $D_{Mn}$ /BO $D_{5}$ Ratio decreased with the time went by. It meant bioresolution increased as time went by. However, after 15 min., the CO $D_{Mn}$ /BO $D_{5}$ Ratio did not decrease any more. 8. In the case of $H_2O$$_2$ Divisiom Dose experiment, the increase of bioresolution was highest at the $H_2O$$_2$ Division dosage Ratio of 3:7.3:7.

  • PDF

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism(CEDM) for Korea Standard Nuclear Power Plant are studied with the CEDM modeled as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The optimal .mu.-f curve is developed to reduce the response amplitudes of both primary and secondary masses. In order to improve a design it is proposed that the natural frequency ratio, f, should be converged to 0.93, the mass ratio, .mu., should not be reduced, and the result should be converged to the optimal .mu.-f curve. Optimal design for CEDM components has been carried out and the response amplitude ratios of reactor are reduced 10.5 - 19.7% while those of CEDM are reduced 6.3 - 3.4%.

  • PDF

Identification of Optimal Control Parameters for a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트시스템의 최적 제어매개변수 식별)

  • Kim, Il-Jo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.30-37
    • /
    • 2012
  • Pneumatic Active Engine Mount(PAEM) with open-loop control system has been developed to reduce the transmission of the idle-shake vibration induced by engine effectively and economically. A solenoid valve installed between PAEM and vacuum tank is on-off switched by the Pulse Width Modulate(PWM) control signal to decrease the dynamic stiffness of the engine mount. This paper presents the methodology to identify the optimal values of control parameters of a PAEM, i.e, turn-on timing and duty ratio of PWM signal for 6 different idle driving conditions. A scanning algorithm was first applied to the vehicle test to obtain the approximate optimal control parameters minimizing the vibration at front seat rail and at steering wheel. Then the PAEM system identification was fulfilled to find accurate optimal control parameters by using multi-layer neural networks of Levenberg-Marquardt algorithm with vehicle test data.

Optimal Design of Tall Residential Building with RC Shear Wall and with Rectangular Layout

  • Jinjie, Men;Qingxuan, Shi;Zhijian, He
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The objective of optimization is to present a design process that minimizes the total material consumption while satisfying current codes and specifications. In the research an optimization formulation for RC shear wall structures is proposed. And based on conceptual design methodology, an optimization process is investigated. Then optimal design techniques and specific explanations are introduced for residential buildings with shear wall structure, especially for that with a rectangular layout. An example of 30-story building is presented to illustrate the effectiveness of the proposed optimal design process. Furthermore, the influence of aspect ratio on the concrete consumption and the steel consumption of the superstructure are analyzed for this typical RC shear wall structure; and their relations are obtained by regressive analysis. Finally, the optimal material consumption is suggested for the residential building with RC shear wall structure and with rectangular layout. The relation and the data suggested can be used for guiding the design of similar RC shear wall structures.

Determination of the Optimal Cutoff Point using Adjusted Stratum-Specific Likelihood Ratios when Disease Verification is subject to Verification Bias (선택편향이 존재할 때, 수정 층화우도비를 이용한 최적절사점의 결정)

  • Kim, Hu-Nam;Park, Yong-Gyu
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.515-530
    • /
    • 2007
  • Stratum-specific likelihood ratio, which is ratio of the sensitivity to 1-the specificity in each stratum of the test, could be biased if the sensitivity and specificity of diagnostic test are affected by verification bias. Therefore, the optimal cutoff point determined by biased stratum-specific likelihood ratios is incorrect. In this study, we derived adjusted stratum-specific likelihood ratios using the adjusted sensitivity and specificity, and obtained the adjusted optimal cutoff point. The influence of the verification bias on the optimal cutoff point was described through the relation between adjusted and unadjusted stratum-specific likelihood ratios.

Investigation on Seismic-Response Characteristics and Optimal Design Parameters of Tuned Mass Damper Considering Site Effects (지반특성에 따른 동조질량감쇠기의 지진응답특성 및 최적설계변수)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5306-5313
    • /
    • 2011
  • Most previous studies for finding optimal design parameters of a tuned mass damper(TMD) have been focused on the harmonic excited single-degree-of freedom system. In this study, optimal values of damping ratio and tuning frequency ratio of a TMD applied to control a seismically excited structure are investigated through numerical analyses. Considering that the structural responses due to earthquake loads are strongly dependent on the soil condition, the site effects on the optimal parameters of the TMD are studied and compared to those presented by previous studies. Numerical analyses results indicate that better control performance can be obtained by using the parameters proposed by this study in the seismic application of the TMD.

Optimal Capital Adequacy Ratios for Commercial Banks: Empirical Evidence from Vietnam

  • LUONG, Thi Minh Nhi;NGUYEN, Phuong Anh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.10
    • /
    • pp.47-56
    • /
    • 2021
  • It is unavoidable for businesses, especially commercial banks, to compete with other firms and financial institutions in a globalized and internationalized world. Basel I, II, and III were developed by the Basel Committee on Banking Supervision with the primary purpose of supporting banks in dealing with potential risks and enhancing their ability to absorb losses. Basel II and III require the minimum capital adequacy ratio (CAR) of 8% and 10.5%, respectively. This paper estimates the optimal CAR of 26 commercial banks in Vietnam from 2016 to 2020 using the two-stage DEA method. According to the empirical findings, banks with ideal CARs exceeding 8% (as defined by Basel II) and 10.5 percent (as defined by Basel III) account for approximately 98 percent and 88 percent of all banks, respectively. Furthermore, 75.83 percent of all banks need to boost their existing CAR to achieve the optimal level of CAR as well as obtain the best performance. On average, the optimal CAR of state-owned banks is higher than other joint-stock banks, respectively 26 percent and 19 percent. Consequently, it is recommended for Vietnam commercial banks to reach optimal CAR and comply with the new policy set by Basel III with the purpose of approaching the efficient frontier.