• Title/Summary/Keyword: Optimal radiation dose

Search Result 215, Processing Time 0.021 seconds

The Evaluation of Radiation Dose by Exposure Method in Digital Magnification Mammography (디지털 유방확대촬영술에서 노출방식에 따른 피폭선량 평가)

  • Kim, Mi-Young;Kim, Hwa-Sun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.293-298
    • /
    • 2012
  • In digital mammography, Exposure factor were automatically chosen using by measurement breast thickness and the density of mammary gland. It may cause a increase glandular dose. The purpose of this study was to investigate optimal image quality in digital magnification mammography to decrease radiation exposure of patient dose. Auto mode gives the best image quality however, AGD showed better image quality. Image quality of manual mode passed phantom test and SNR at 55% mAs of auto mode commonly used in the digital magnification mammography. Also it could reduce AGD. According to result, manual mode may reduce the unnecessary radiation exposure in digital magnification mammography.

A study on pressurizer cutting scenario for radiation dose reduction for workers using VISIPLAN

  • Lee, Hak Yun;Kim, Sun Il;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2736-2747
    • /
    • 2022
  • The operations in the design lifecycle of a nuclear power plant targeted to be decommissioned lead to neutron activation. Operations in the decommissioning process include cutting, decontamination, disposal, and processing. Among these, cutting is done close to the target material, and thus workers are exposed to radiation. As there are only a few studies on pressurizers, there arises the need for further research to assess the radiation exposure dose. This study obtained the specifications of the AP1000 pressurizer of Westinghouse and the distribution of radionuclide inventory of a pressurizer in a pressurised water reactor for evaluation based on literature studies. A cutting scenario was created to develop an optimal method so that the cut pieces fill a radioactive solid waste drum with dimensions 0.571 m × 0.834 m. The estimated exposure dose, estimated using the tool VISIPLAN SW, in terms of the decontamination factor (DF) ranged from DF-0 to DF-100, indicating that DF-90 and DF-100 meet the ICRP recommendation on exposure dose 0.0057 mSv/h. At the end of the study, although flame cutting was considered the most efficient method in terms of cutting speed, laser cutting was the most reasonable one in terms of the financial aspects and secondary waste.

Multidisciplinary team approach for the management of patients with locally advanced non-small cell lung cancer: searching the evidence to guide the decision

  • Oh, In-Jae;Ahn, Sung-Ja
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • Locally advanced non-small cell lung cancer (LA-NSCLC) is composed of heterogeneous subgroups that require a multidisciplinary team approach in order to ensure optimal therapy for each patient. Since 2010, the National Comprehensive Cancer Network has recommended chemoradiation therapy (CRT) for bulky mediastinal disease and surgical combination for those patients with single-station N2 involvement who respond to neoadjuvant therapy. According to lung cancer tumor boards, thoracic surgeons make a decision on the resectability of the tumor, if it is determined to be unresectable, concurrent CRT (CCRT) is considered the next choice. However, the survival benefit of CCRT over sequential CRT or radiotherapy alone carries the risk of additional toxicity. Considering severe adverse events that may lead to death, fit patients who are able to tolerate CCRT must be identified by multidisciplinary tumor board. Decelerated approaches, such as sequential CRT or high-dose radiation alone may be a valuable alternative for patients who are not eligible for CCRT. As a new treatment strategy, investigators are interested in the application of the innovative radiation techniques, trimodality therapy combining surgery after high-dose definitive CCRT, and the combination of radiation with targeted or immunotherapy agents. The updated results and on-going studies are thoroughly reviewed in this article.

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter (능동형 전자식 개인피폭선량계의 저에너지 X선 영역별 최적화를 위한 에너지보상 필터 두께에 대한 연구)

  • Kim, Jung-Su;Park, Youn-Hyun;Chae, Hyun-Sic
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.519-526
    • /
    • 2022
  • Electronic personal dosimeter (EPD) provide real time monitoring and a direct indication of the accumulated dose or dose rate in terms of personal dose. Most EPD do not perform well in low energy photon radiation fields present in medical radiation environments. It has poor responsibility and large error rate for low energy photon radiation of medical radiation environments. This study evaluated to optimal additional filtration for EPD using silicon PIN photodiode detector form 40 to 120 kVp range in medical radiation environments. From 40 to 80 kVp energy range, Al 0.2 mm and Sn 1.0 mm overlapped filtration showed good responsibility to dose rate and from 80 kVp to 120 kVp energy range, Al 0.2 mm and Sn 1.6 mm overlapped filtration showed good responsibility to dose rate.

Dosimetric Characteristics of Flexible Radiochromic Film Based on LiPCDA

  • Jung, Seongmoon;Cho, Jin Dong;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • This study aimed to determine the optimal thickness of the active layer and scan mode for a flexible radiochromic film (F-RCF) based on the active lithium salt of pentacosa-10,12-diynoic acid (LiPCDA). F-RCFs of 90, 120, 140, and 170-㎛ thickness were fabricated using LiPCDA. Several pieces of the F-RCFs were exposed to doses ranging from 0 to 3 Gy. Transmission and reflection modes were used to scan the irradiated F-RCFs. Their dose-response curves were obtained using a second-order polynomial equation. Their sensitivity was evaluated for both scanning modes, and the uniformity of the batch was also examined. For both the transmission and reflection modes, the sensitivity increased as the film thickness increased. For the reflection mode, the dose response increased dramatically under 1 Gy. The value of the net optical density varied rapidly as the thickness of the film increased. However, the dose-response curves showed a supralinear-curve relationship at doses greater than 2 Gy. The sensitivity of the reflection scan at doses greater than 2 Gy was higher than that of the reflection scan within 0-2 Gy. The sensitivity steadily decreased with increasing doses, and the sensitivity of the two modes was within 0.1 to 0.2 at 2 Gy and was saturated beyond that. For the transmission scan, the sensitivity was approximately 0.2 at 3 Gy. For the intra-batch test result, the maximum net optical density difference of the intra-batch was 5.5% at 2 Gy and 7.4% at 0.2 Gy in the transmission and reflection scans, respectively. In the low-dose range, film thickness of more than 120-㎛ was proper in the transmission mode. In contrast, the transmission mode showed a better result compared to the reflection mode. Therefore, the proper scan mode should be selected according to the dose range.

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Determining the Optimal Dose Prescription for the Planning Target Volume with Stereotactic Body Radiotherapy for Non-Small Cell Lung Cancer Patients

  • Liu, Xi-Jun;Lin, Xiu-Tong;Yin, Yong;Chen, Jin-Hu;Xing, Li-Gang;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2573-2577
    • /
    • 2016
  • Objective: The aim of this study was to determine a method of dose prescription that minimizes normal tissue irradiation outside the planning target volume (PTV) during stereotactic body radiotherapy (SBRT) for patients with non-small cell lung cancer. Methods: Previous research and patients with typical T1 lung tumors with peripheral lesions in the lung were selected for analysis. A PTV and several organs at risk (OARs) were constructed for the dose calculated; six treatment plans employing intensity modulated radiotherapy (IMRT) were produced, in which the dose was prescribed to encompass the PTV, with the prescription isodose level (PIL) set at 50, 60, 70, 80, 90 or 95% of the isocenter dose. Additionally, four OARs around the PTV were constructed to evaluate the dose received in adjacent tissues. Results: The use of higher PILs for SBRT resulted in improved sparing of OARs, with the exception of the volume of lung treated with a lower dose. Conclusions: The use of lower PILs is likely to create significant inhomogeneity of the dose delivered to the target, which may be beneficial for the control of tumors with poor conformity indices.

A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT (두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구)

  • Ki-Won Kim;Joo-Young Oh;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Kyung-Hwan Lim;Yun Yi
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

A Comprehensive Dosimetric Analysis of Inverse Planned Intensity Modulated Radiation Therapy and Multistatic Fields Technique for Left Breast Radiotherapy (좌측 유방 방사선치료를 위한 역치료계획의 세기변조방사선치료와 다중빔조사영역치료기법 사이의 포괄적 선량측정 분석)

  • Moon, Sung-Kwon;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Purpose: This aim of this study is to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and MSF in the radiotherapy of the left breast. Materials and Methods: We performed a comparative analysis of two radiotherapy modalities that can achieve improved dose homogeneity. First is the multistatic fields technique that simultaneously uses both major and minor irradiation fields. The other is IMRT, which employs 3 or 5 beams using a fixed multileaf collimator. We designed treatment plans for 16 early left breast cancer patients who had taken breast conservation surgery and radiotherapy, and analyzed them from a dosimetric standpoint. Results: For the mean values of $V_{95}$ and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving over 110% of the prescribed dose were not found in any of the three methods. A Tukey test performed on IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and heart than multistatic fields technique (MSF) in the low-dose area, but in the high-dose area, MSF showed a slight increase. Conclusion: In order to improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered an optimal alternative to IMRT for radiotherapy of early left breast cancer.