• Title/Summary/Keyword: Optimal process condition

Search Result 980, Processing Time 0.027 seconds

Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass (Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정)

  • Lee Jae-Hak;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

OPTIMAL CONTROL AND OPTIMIZATION ALGORITHM OF NONLINEAR IMPULSIVE DELAY SYSTEM PRODUCING 1,3-PROPANEDIOL

  • Li, Kezan;Feng, Enmin;Xiu, Zhilong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.387-397
    • /
    • 2007
  • According to the controllability of pulse times and the amount of jumps in the states at these times in the process of fed-batch culture producing 1,3-propanediol, this paper proposes a terminal optimal control model, whose constraint condition is the nonlinear impulsive delay system. The existence of optimal control is discussed and an optimization algorithm which is applied to each subinternal over one cycle for this optimal control problem is constructed. Finally, the numerical simulations show that the terminal intensity of producing 1,3-propanediol has been increased obviously.

A Study on the Coagulation of Aquatic Humic Acid and Reducing Residual Aluminum (수중 Humic Acid의 효율적 응집처리와 잔류알루미늄 감소방안에 관한 연구)

  • 김수연;정문호;두옥주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.38-46
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the effective coagulation of commercial humic acid which is well known as major precursor of trihalomethane, with LAS and PAC and to quantify the residual aluminum in the treated water. Then the optimum pH, the dosage of coagulant were determined. 1. Humic acid concentrati6n, UV absorbance and color were well correlated and UV absorbance(254 nm) and color seem to be used in quntificative analysis of humic acid of same kind. 2. Optimal dosage of LAS and PAC increase as humic acid concentration increases. And optimal pH range for coagulation using LAS is pH 5.5-7.0 and pH 3.5-6.5 for PAC. Within these ranges the removal efficiency is 90-99%. 3. The results of quantification of residual aluminum in treated water shows that minimal aluminum remains on the optimal coagulation condition. But the residual aluminum increses as the dosage of coagulant is beyond the optimal range. Thus the dosage of coagulant should be chosen with the condition on which humic acid removal is maximum and the residual aluminum concentration is minimum. 4. In the water treatment process the raw water pH range is 6.5-8.0, and it seems to be possible to remove humic acid by charge neutralization not by sweep floc. But it should be considered that different commercial humic acids have different physical and chemical characteristics.

  • PDF

A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding (수평자세 맞대기 TIG 초층용접에서 최적용접조건의 선정에 관한 연구)

  • Jung, Sung Hun;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.321-327
    • /
    • 2017
  • In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a $2^{nd}$ regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

Dynamic Optimization of o Tire Curing Process for Product Quality (제품품질을 위한 타이어 가황공정의 동적 최적화)

  • Han, In-Su;Kang, Sung-Ju;Chung, Chang-Bock
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 1999
  • The curing process is the final step in tire manufacturing whereby a green tire built from layers of rubber compounds is formed to the desired shape and the compounds are converted to a strong, elastic materials to meet tire performance needs under elevated pressure and temperature in a press. A numerical optimization procedure was developed to improve product quality in a tire curing process. First, a dynamic constrained optimization problem was formulated to determine the optimal condition of the supplied cure media during a curing process. The objective function is subject to an equality constraint representing the process model that describes the heat transfer and cures kinetic phenomena in a cure press and is subject to inequality constraints representing temperature limits imposed on cure media. Then, the optimization problem was solved to determine optimal condition of the supplied cure media for a tire using the complex algorithm along with a finite element model solver.

  • PDF

Antioxidant Characteristics of Artemisis capillaris Hot-water Extract Using Response Surface Methodology (반응표면분석법을 이용한 인진쑥 열수추출물의 항산화적 특성)

  • Kim, Seong-Ho
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.419-427
    • /
    • 2014
  • In order to examine antioxidative characteristics of Artemisia capillaris response surface methodology was used to optimize the hot water extraction process by analyzing and monitoring the extraction condition. For total phenolic compounds content, the optimal extraction temperature, time and amount of solvent per sample were $94.50^{\circ}C$, 2.06 hr and 25.03 ml/g, respectively. Also, the optimal conditions for electronic donating ability were $91.82^{\circ}C$, 2.90 hr and 20.88 ml/g, respectively. The nitrile scavenging ability (pH 1.2) was optimized using the extraction temperature of $97.36^{\circ}C$, extraction time 2.75 hr and 15.19 ml/g as the amount of solvent per sample. Regression equations of total phenolic compounds content, electron donating ability and nitrile scavenging ability as dependent variable were deduced from each analyzed extraction condition. And finally, their response surfaces were superimposed with the optimal conditions to obtain values for each extraction process factor. The predicted results through superimposing were extraction temperature $90{\sim}95^{\circ}C$, extraction time 2.5~3.5 hr and amount of solvent per sample 17~24 ml/g.

Plasma Etching Damage of High-k Dielectric Layer of MIS Capacitor (High-k 유전박막 MIS 커패시터의 플라즈마 etching damage에 대한 연구)

  • 양승국;송호영;오범환;이승걸;이일항;박새근
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1045-1048
    • /
    • 2003
  • In this paper, we studied plasma damage of MIS capacitor with $Al_2$O$_3$ dielectric film. Using capacitor pattern with the same area but different perimeters, we tried to separate etching damage mechanism and to optimize the dry etching process. After etching both metal and dielectric layer by the same condition, leakage current and C-V measurements were carried out for Pt/A1$_2$O$_3$/Si structures. The flatband voltage shift was appeared in the C-V plot, and it was caused by the variation of the fixed interface charge and the interface trapped charge. From I-V measurement, it was found the leakage current along the periphery could not be ignored. Finally, we established the process condition of RF power 300W, 100mTorr, Ar/Cl$_2$ gas 60sccm as an optimal etching condition.

  • PDF

Induction Heating of Aluminum Alloys for Thixoforging (Thixoforging 공정을 위한 알루미늄 재료의 유도 가열)

  • 정홍규;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.107-112
    • /
    • 1998
  • The semi-solid materials(SSMs) fabricated under electric-magnetic stirring condition are necessary to be applicated in the thixoforging process. The optimal reheating conditions to thixoforging process were investigated with changing the reheating time, holding time, reheating temperatures, capacity, and adiabatic material size. In the case of solid fraction fs=50%, the microstructure of SSM (specimen size:d76X 190) at the condition of the first reheating time 4min, holding time lrnin and reheating temperature 350%, the second reheating time 3min, holding time 3min and reheating temperature 575C, the thlrd reheating time lmin, holding time 2min and reheating temperature 584'C, capacity Q=8.398KW, and adiabatic material size 53mm is obtained with globular microstructure and finest.

  • PDF

Optimal Condition for Spot Weldment of Dissimilar Steel Sheet in Automotive (GA에 의한 차량용 이종재 최적점용접 조건)

  • Han, Jae-Hee;Yang, Sung-Mo;Yu, Hyo-Sun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.68-73
    • /
    • 2010
  • Welding conditions in process of spot welding must become optimum and need to guarantee stability and reliability of vehicle body considering dynamic load history. Because welding parameters in process of spot welding are various, it is difficult that the quality of spot weldment was included in the optimum levels. In this paper, we found the optimum welding conditions satisfying KS spot welding qualities using genetic algorithm and spot welding experiments of high tensile strength steel and galvanized steel. Those experiments were dissimilar weld and 2-lap spot welding. Genetic algorithm created random welding condition after that, selected optimum individuals by probability concept.