• 제목/요약/키워드: Optimal power control

검색결과 1,239건 처리시간 0.027초

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

Distributed Power and Rate Control for Cognitive Radio Networks

  • Wang, Wei;Wang, Wenbo;Zhu, Yajun;Peng, Tao
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.166-174
    • /
    • 2009
  • In this paper, a distributed power and end-to-end rate control algorithm is proposed in the presence of licensed users. By Lagrangian duality theory, the optimal power and rate control solution is given for the unlicensed users while satisfying the interference temperature limits to licensed users. It is obtained that transmitting with either 0 or the maximum node power is the optimal scheme. The synchronous and asynchronous distributed algorithms are proposed to be implemented at the nodes and links. The convergence of the proposed algorithms are proved. Finally, further discussion on the utility-based fairness is provided for the proposed algorithms. Numerical results show that the proposed algorithm can limit the interference to licensed user under a predefined threshold.

전자유압식 CVT의 운용 및 제어 소프트웨어 개발과 실시간 제어 (Development of an operation and control software for electro-hydraulic)

  • 권혁빈;김광원;김현수;은탁;박찬일
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.36-46
    • /
    • 1993
  • In CVT vehicle, the engine speed is completely decoupled from the vehicle speed within the range from maximum transmission ratio to minimum transmission ratio. This allows the engine to operate in optimal state(e.g. best fuel economy or maximum power mode.) In this study, the CVT control algorithm for optimal operation of engine is suggested. In order to implement the real time digital control of electro-hydraulic CVT system, a software called CVTCON has been developed. CVTCON also includes the CVT operation module, (2) system test module, (3) system control module and (4) data management module. By using the CVTCON and the electro-hydraulic CVT system, two modes of experiments were carried out: constant throttle opening mode and acceleration mode. From the experimental result, it was found that the algorithm suggested in this study showed optimal operation of the CVT system.

  • PDF

수화적 분할 기법을 이요한 분산처리 최적조류계산의 수렴속도 향상에 관한 연구 (On the convergence Rate Improvement of Mathematical Decomposition Technique on distributed Optimal Power Flow)

  • 허돈;박종근;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.120-130
    • /
    • 2001
  • We present an approach to parallelizing optimal power flow that is suitable for distributed implementation and is applicable to very large interconnected power systems. This approach can be used by utilities to optimize economy interchange without disclosing details of their operating costs to competitors. Recently, it is becoming necessary to incorporate contingency constraints into the formulation, and more rapid updates of telemetered data and faster solution time are becoming important to better track changes in the system. This concern led to a research to develop an efficient algorithm for a distributed optimal power flow based on the Auxiliary Problem Principle and to study the convergence rate improvement of the distributed algorithm. The objective of this paper is to find a set of control parameters with which the Auxiliary Problem Principle (Algorithm - APP) can be best implemented in solving optimal power flow problems. We employed several IEEE Reliability Test Systems, and Korea Power System to demonstrate the alternative parameter sets.

  • PDF

Globally Optimal Solutions for Cross-Layer Design in Fast-Fading Lossy Delay-Constrained MANETs

  • Pham, Quoc-Viet;Kim, Hoon;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.168-177
    • /
    • 2015
  • To increase the overall utility and decrease the link delay and power consumption, a joint optimal cross-layer design of congestion control at the transport layer, link delay at the data link layer and power allocation at the physical layer for mobile ad hoc networks is considered in this paper. As opposed to previous work, the rate outage probability in this work is based on exactly closed-form; therefore, the proposed method can guarantee the globally optimal solutions to the underlying problem. The non-convex formulated problem is transformed into a convex one, which is solved by exploiting the duality technique. Finally, simulation results verify that our proposal achieves considerable benefits over the existing method.

IA-PID 제어기를 이용한 교류-직류시스템의 동태안정도에 관한 연구 (A Study on Dynamic Stability in AC-DC Power System using IA-PID Controller)

  • 정형환;정현화;왕용필;박희철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.161-163
    • /
    • 2001
  • In this paper, a method for optimal design of PID controller using the immune algorithm(IA) has been proposed to improve the stability of A.C.-D.C. power system. To design optimal PID controller, formulation of AC-DC system equation, selection of stability analysis model, formulation immune algorithm and application model of optimal PID controller are proposed in order of the paper. In case of various disturbance, computer simulations have been performed and the proposed IA-PID controller has been compared with base controller which is conventional control technique for dynamics. From simulation results, it is demonstrated that proposed IA-PID controller has good dynamic responses about the disturbance of power system and reliability as compared with the base control.

  • PDF

최적의 UPFC 위치 결정에 관한 연구 (A Study on the Determination of Optimal UPFC Location)

  • 배철오
    • 해양환경안전학회지
    • /
    • 제15권3호
    • /
    • pp.257-262
    • /
    • 2009
  • 일체형 조류제어기인 UPFC는 FACTS 기기중 가장 효과적인 기기 중 하나이다. 본 논문에서는 전력시스템에서 UPFC의 최적위치를 결정하는 데 필요한 컴퓨터의 계산을 줄이는 방법에 대하여 기술한다. 이를 위해 UPFC 제어 변수들과 관련된 발전 비용의 민감도가 평가되었다. 모든 송전선로의 UPFC 민감도를 얻기 위해 단지 한 번의 최적조류제어만으로 해결하였다. 전력시스템에서 UPFC의 최적 위치를 알아내기 위해 여러 권선비와 가변 션트 어드미턴스로 구성된 이상변압기 모델을 사용하였다. 이 모델에서 UPFC 제어 변수들은 UPFC 입 출력의 전류와 전압에 대해서 종속되지 않는다. 민감도 방법은 그의 효율성을 파악하기 위해 IEEE 14 모선에서 파생된 5 모선시스템과 IEEE 14 모선시스템을 대상으로 실험하였다.

  • PDF

An Optimized PI Controller Design for Three Phase PFC Converters Based on Multi-Objective Chaotic Particle Swarm Optimization

  • Guo, Xin;Ren, Hai-Peng;Liu, Ding
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.610-620
    • /
    • 2016
  • The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method.

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

최적제어이론에 의한 원자로 제어봉속도의 설계 (The Control Rod Speed Design for the Nuclear Reactor Power Control Using Optimal Control Theory)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.536-547
    • /
    • 1994
  • 본 논문에서는 최적제어기법을 이용한 원자로 출력 제어시스템을 다루었다. 시스템 변수들을 상태변수로 표시하면 관측치 뿐만 아니라 시스템 내부의 모든 상태변수를 동시에 다룰 수 있으므로 설계의 자유도가 증가될 수 있다. 따라서 본 논문에서는 원자로의 동특성식과 열수력학적 에너지 평형식을 사용하여 원자로를 모델링한 후 이를 상태변수로 나타내었다. 다음으로는 LQR 및 LQG 시스템을 설계하여 제어봉 및 출력의 거동을 동시에 만족시킬 수 있는 설계조건을 결정하였다. 또한 서보 시스템의 설계를 위해 보통의 휘드백 시스템과 차수를 증가시킨 레귤레이팅 시스템을 만들어 비교하였으며 그 결과 증가차수 레귤레이팅 시스템이 보통의 휘드백 시스템에 비해 우수한 제어 특성이 있음을 알 수 있었다.

  • PDF