• Title/Summary/Keyword: Optimal performances

Search Result 626, Processing Time 0.024 seconds

A Study on Optimal Layout of Control Buttons on Center Fascia Considering Human Performance under Emergency Situations (돌발 상황 하의 사용자 반응을 고려한 자동차 중앙 계기판 버튼의 최적 배치 방안 연구)

  • Choi, Jun-Young;Kim, Young-Su;Bahn, Sang-Woo;Yun, Myung-Hwan;Lee, Myun-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.365-373
    • /
    • 2010
  • Many studies on safety issues of human-machine interaction are being conducted, especially taking emergency situations into consideration. In light of this view, the importance of objective and reliable measurement of users' reactions under emergency situations is becoming more important than ever in reflecting such issues in the design of everyday things. However, despite the need to consider the human-machine interactions and human performances at the design stage, there were few studies which considered human performances and behaviors under emergency situations. This study is about an evaluation method and design guide to include such human performances under emergency situations during human-machine interactions. This is achieved through an experiment where operators are instructed to press the emergency button at an experimentally designed location under a random emergency situation. By analyzing the results in a human factors perspective, the response time and the accuracy of the operators' behaviors are explained. Analysis revealed that in designing the center fascia for automobiles, there is a tradeoff between response time and accuracy, and the optimal size of buttons differ in each part of the center fascia. This method is expected to be applicable to industrial situations to derive optimal position for emergency buttons.

Optimal Design of Gerotor with Combined Profiles (Three-Ellipse and Ellipse-Involute-Ellipse) Using Rotation and Translation Algorithm (회전이동 및 병진이동 알고리즘을 이용한 조합된 치형형상(3-타원 및 타원-인벌루트-타원)을 갖는 지로터의 최적설계)

  • Bae, Jun Ho;Lee, Ho Ryul;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • Because technology of the sintering process is highly advanced, the gerotor used in the internal gear pumps of vehicles has advantages for manufacturing complex profiles and obtaining durability and minimization. However, it has been necessary to continuously improve the flow rate and noise of internal gear pumps for better fuel efficiency. The existing rotor was designed using a translation algorithm. This caused a discontinuity of the rotor profile, which had adverse effects on the performance. In this study, to improve the discontinuity of the profile, a new design program using a rotation and translation algorithm was developed, and two types of combined multiple profiles (three-ellipses and ellipse 1-involute-ellipse 2) were generated. Then, the performances (flow, flow rate, specific sliding, and pressure angle) of these profiles were calculated. On the basis of the calculation results for the performances, optimal designs of the two types were carried out and verified by comparing their performances with those of the existing rotor profiles.

Multidisciplinary Multi-Point Design Optimization of Supersonic fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계)

  • Kim Y. S.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study, the multidisciplinary aerodynamic-structural optimal design is carried out for the supersonic fighter wing. Through the aeroelastic analyses of the various candidate wings, the aerodynamic and structural performances are calculated such as the lift coefficient, the drag coefficient and the deformation of the wing. In general, the supersonic fighter is maneuvered under the various flight conditions and those conditions must be considered all together during the design process. The multi-point design, therefore, is deemed essential. For this purpose, supersonic dash, long cruise range and high angle of attack maneuver are selected as representative design points. Based on the calculated performances of the candidate wings, the response surfaces for the objectives and constraints are generated and the supersonic fighter wing is designed for better aerodynamic performances and less weights than the baseline. At each design point, the single-point design is performed to obtain better performances. Finally, the multi-point design is performed to improve the aerodynamic and structural performances for all design points. The optimization results of the multi-point design are compared with those of the single-point designs and analyzed in detail.

  • PDF

Design Strategies for Adsorbents with Optimal Propylene/propane Adsorptive Separation Performances (최적의 프로필렌/프로판 흡착 분리 성능을 가지는 흡착제의 개발 전략들)

  • Kim, Tea-Hoon;Lee, Seung-Joon;Kim, Seo-Yul;Kim, Ah-Reum;Bae, Youn-Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • An efficient propylene/propane separation technology is needed to obtain high-purity propylene, which is a raw material for polypropylene synthesis. Since conventional cryogenic distillation is an energy-intensive process due to the similar physicochemical properties of propylene and propane, adsorptive separation has gained considerable interest. In this study, we have computationally investigated the changes in adsorption separation performances by arbitrarily controlling the adsorption strength of open metal sites in two different types of metal-organic frameworks (MOFs). Through the evaluation of adsorptive separation performances in terms of working capacity, selectivity, and Adsorption Figure of Merit (AFM), we have suggested proper density and strength of adsorption sites as well as appropriate temperature condition to obtain optimal propylene/propane adsorptive separation performances.

Optimal Design of Slim TV Wall Mount Arm with Cantilever Structure (외팔보 구조의 슬림형 TV 월마운트암의 최적설계)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • This paper investigated optimal design for slim wall mount arm for flat TV. Recently the number of flat TV sets in use went on increasing in TV market. As the flat TV sets are getting common, consumers came to need another requirements like aesthetic factor besides display performances. As the new TV sets tend to be slimmer due to aesthetic design, Wall mount also requires to be slimmer for aesthetic balance. Slim structures, however, are vulnerable to structural rigidity. In this study, slim wall mount arm has been designed by 3D CAD and DOE (Design of Experiments) and finite element analysis for optimal structural design were carried out to determine the design variables for minimize working stress of wall mount arm. Finally two optimal design conditions were selected through DOE and FEM and one of those was chosen under constraint of minimizing blanking developed length.

Optimal Feedforward Frequency Control for Hydro-Power Stations in Power Systems (전력시스템에서 수력발전소에 대한 최적 피이드포워드 주파수 제어)

  • Tak, Hyun-Soo;Ryu, Chang-Sun;Ahn, Tea-Chon;Lee, Jong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.744-747
    • /
    • 1991
  • In this paper, the design of optimal feedforward regulators with the optimal feedforward filters for improving power frequency deviations in an interconnected system, using a polynominal LQG approach, is proposed. The performances of the regulators with the optimal feedforward filters were compared with the frequency feedback regulator only in power system by simulation. The results show that the optimal feedforward regulators reduce the power frequency standard deviation by 25%-60% in the white noise load and the peak deviation in the step load by 8%-27%.

  • PDF

Optimal Frame Aggregation Level for Connectivity-Based Multipolling Protocol in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 연결정보 기반의 멀티폴링 프로토콜을 위한 최적의 프레임 애그리게이션 레벨)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • When the PCF (Point Coordinated Function) MAC protocol is combined with the frame aggregation method to enhance the MAC performance in IEEE 802.11 wireless LANs, the formulae for the optimal frame aggregation level for best PCF MAC performance were derived in our previous study. We extend the formulae for the PCF protocol to derive the optimal frame aggregation level for the connectivity-based multipolling MAC protocol in IEEE 802.11 wireless LANs. By simulations, we compare the performances of IEEE 802.11 wireless LANs with the optimal and random frame aggregation levels. Compared with the random frame aggregation level, the optimal frame aggregation level significantly improves the performance of IEEE 802.11 wireless LANs.

Performance characteristics of a vehicle active suspension system with an optimal variable structure controller (최적 가변구조제어기를 갖는 차량 능동 현가시스템의 성능특성에 관한 연구)

  • 김주용;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1161-1166
    • /
    • 1993
  • The performances of a vehicle active suspension system with an optimal variable structure controller are compared to those of passive suspension system and active suspension systems with sky-hook and optimal controllers. The quater car model has a 2 DOF which accounts for vertical motions of a sprung and a unsprung masses. The transient responses are analyzed when a vehicle passing through a bump with a constant speed and the frequency responses are analyzed for white noise input at wheel. Particulary, RMS responses are also analyzed. It is shown that the optimal variable structure controller gives better performance of the vehicle active suspensio system than an optimal and a sky-hook controller.

  • PDF

A Study of Optimal Impact Angle Control Laws (최적 충돌각 제어법칙에 관한 연구)

  • 송택렬;신상진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF