• Title/Summary/Keyword: Optimal performances

Search Result 627, Processing Time 0.029 seconds

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

Development of Solution for Safety and Optimal Weather Routing of a Ship

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Mai, Thi Loan;Nguyen, Tien Thua;Vo, Anh Hoa;Seo, Ju-Won;Yoon, Gyeong-Hwan;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.318-320
    • /
    • 2018
  • When a ship sails on sea, it may be influenced by the environmental disturbance such as wind, wave, sea surface temperature, etc. These affect on the ship's speed, fuel consumption, safety and operating performance. It is necessary to find the optimal weather route of a ship to avoid adverse weather conditions which can put the crews in serious danger or cause structural damage to the vessel, machinery, and equipment. This study introduced how to apply A* algorithm based on sea trial test data for determining the optimal ship routes. The path cost function was modelled as a function of minimum arrival time or minimum energy depending on the time of various environment conditions. The specially modelled path-cost function and the safety constraints were applied to the A* algorithm in order to find the optimal path of the ship. The comparison of ship performances estimated by real sea trial's path and estimated optimal route during the voyage of the ship was investigated. The result of this study can be used to create a schedule to ensure safe operation of the ship with short passage time or minimum energy. In addition, the result of this study can be integrated into an on-board decision supporting expert system and displayed in Electronic Chart Display and Information System (ECDIS) to provide all the useful information to ship master.

  • PDF

New Optimal Tuning Method of IMC-PID for SI/SO Systems (단일 입출력 시스템에 대한 IMC-PID의 새로운 최적 동조법)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.213-217
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain, phase margin and maximum magnitude of sensitivity function, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

  • PDF

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

A Study on Durability Improvement of Concrete Using Glycol Ether Chemical Admixture (글리콜에테르계 혼화제가 콘크리트의 내구성 향상에 미치는 영향에 관한 연구)

  • Kim, Kwang-Ki;Song, In-Myung;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.117-124
    • /
    • 2007
  • Focused on the material-related aspect for enhancing the durability of concrete, the present study analyzed the effect of glycol ether admixture, which is a chemical admixture that can compact the structure of concrete by entraining air inside the concrete, on the basic physical properties and durability characteristic of the concrete. In analyzing the results of experiment, we examined the basic physical properties and durability characteristic of concrete according to addition rate based on OPC and selected the optimal addition rate. In addition, with the optimal addition rate, we added glycol ether admixture to concrete, which contained fly ash used as binder and high-performance water reducing agent for reducing the unit quantity, and examined changes in the characteristics of the concrete. According to the result, the optimal addition rate of glycol ether admixture was 3% of the unit quantity of cement, and the addition of binder and chemical admixture did not have a significant effect on unhardened concrete but reduced the air content. In addition, concrete showed resistance performance of around 30% to carbonation and around 40% to drying shrinkage. In addition, as for resistance to freezing and thawing, the relative dynamic modulus of elasticity was over around 85% through atmospheric curing. These performances prove the effect.

A Study on the Optimal Design of Urban Energy Supply Systems (도시기반 에너지공급시스템의 최적화 방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Woo, Nam-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Recently many efforts have been carried out on the development of energy-efficient and environment-friendly systems in order to preserve natural environment and to reduce environmental loads in the branch of the urban planning and the building design. In this study, a mathematical method was developed and a numerical analysis was carried out with various parameters to provide substantial data for optimal design and operation of urban energy supply systems. Components of the system and their specifications, such as a co-generation system and other heating and cooling systems, could be obtained through this analysis for various resource and energy requirements in urban area. In this study, the system constituents and operating characteristics, and their economic performances such as the value of objective function, the amount of energy consumption were discussed for various load patterns and power load ratios. Also, it turns out that the optimal energy supply system can save energy by $10{\sim}20%$ in comparison with the conventional energy supply system.