Pt/C powder which was used as electrocatalyst in a Phosphoric Acid Fuel Cell(PAFC) was fabricated by colloid method. It was reported that the sulfur from reductant, $Na_2S_2O_4$, worked as a poison against catalyst during long term operation. To remove these sulfurs, we try to treat Pt/C powder by three different methods. First, we tried to remove the sulfur according to temperature and time in $H_2$ atmosphere. As the heat treatment temperature is raised up, the effect of the removal is increased but the electrode performance is decreased because of the growth of Pt particle size. The optimal heat treatment temperature is $400^{\circ}C$, the size of Pt particle is approximately $35{\sim}40{\AA}$ and the electrode performance is $360mA/cm^2$ at 0.7 V. At $400^{\circ}C$, even though the time of heat treatment is extended, size of Pt, amounts of remaining sulfur and electrode performance is almost constant. Secondly, when we removed in a crucible at $900^{\circ}C$ the removal of the sulfur was not better, but the size of Pt particle, approximately $80{\AA}$, was smaller than that of heat treatment in $H_2$ atmosphere at $900^{\circ}C$. Lastly we treated with solvents such as acetone, benzene, and carbon disulfide. It was observed that sulfur components were removed partly by extraction with solvents, the electrode performances were similar each other.
Journal of the Korea Society of Computer and Information
/
v.5
no.2
/
pp.30-36
/
2000
The hidden node plays a role of the functional units that classifies the features of input pattern in the given question. Therefore, a neural network that consists of the number of a suitable optimum hidden node has be on the rise as a factor that has an important effect upon a result. However there is a problem that decides the number of hidden nodes based on back-propagation learning algorithm. If the number of hidden nodes is designated very small perfect learning is not done because the input pattern given cannot be classified enough. On the other hand, if designated a lot, overfitting occurs due to the unnecessary execution of operation and extravagance of memory point. So, the recognition rate is been law and the generality is fallen. Therefore, this paper suggests a method that decides the number of neural network node with feature information consisted of the parameter of learning algorithm. It excludes a node in the Pruning target, that has a maximum value among the feature value obtained and compares the average of the rest of hidden node feature value with the feature value of each hidden node, and then would like to improve the learning speed of neural network deciding the optimum structure of the multi-layer neural network as pruning the hidden node that has the feature value smaller than the average.
Working in the forest would require a wide range of skills and experience for specific tasks which involve with a high level of risks to worker's safety. However, there has been a concern on the current standard wage system for forest workers because it does not effectively reflect the characteristics of typical working conditions in the forest. In addition, the current standard wages for forestry workers was estimated based on the construction industry's wage system. Therefore, the purpose of this study is to assess a current wage system through the mail survey method and to develop a new wage system for forest worker which effectively reflects skill sets and experience required for successful completion of the work in the forest. We mailed the survey questionnaire consisting of 19 questions to 659 forest workers and received 188 responses resulting in a 28.5% response rate. The results showed that the current average optimal wages of forest worker, special worker and feller were 97,680won/day, 127,559won/day and 152,403won/day, respectively though there were variations depending on the regions. In developing the new standard wage system, this study suggest the current work types(worker, special worker and feller) could be divided into 5 work types (forest-environment workers, forest operations in beginner, forest operations in intermediate, forest operations in advanced and forest equipment operator) reflecting specialty of forest operation thereby stabilizing the new wage system for forest workers.
The offshore wind farm is increasingly attractive as one of future energy sources all over the world. In addition, the capacity of an offshore wind turbine gets larger and its physical characteristics are big and heavy. In this regard, a special port is necessary to assemble, store, and transport the offshore wind systems, supporting to form the offshore wind farms. Thus, this study aims to provide a policy maker which evaluation factors can significantly affect to the optimal site selection of a offshore wind port. For this, Fuzzy-AHP method is applied to capture the relative weights. The results of this study can be summarized as follows. Five criteria in level I was defined such as the accumulation factor, the regional factor, the economic factor, the location factor, and the consortium factor. Of these, the accumulation factor(37.4%), the location factor(34.2%), and the economic factor( 24.5%) were analyzed by major factors. In level II, three assessment items of each factor were selected so that total fifteen items were formed. To sum up, the site selection of offshore wind port should consider the density of the wind industry, cargo volume of securing the economic operation of terminals, the development degree of offshore wind related industry, and the proximity to the offshore wind farms. In other words, the construction of offshore wind port should be paid attention to considering not only the proximity to offshore wind farms but also the preference of turbine manufacturing companies.
The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.1
/
pp.96-107
/
2015
VANET technologies provide real-time traffic information for mitigating traffic jam and preventing traffic accidents, as well as in-vehicle infotainment service through Telematics/Intelligent Transportation System (ITS). Due to the rapid increasement of various requirements, the vehicle communication with a limited resource and the fixed frame architecture of the conventional techniques is limited to provide an efficient communication service. Therefore, a new flexible operation depending on the surrounding situation information is required that needs an adaptive design of the network architecture and protocol for efficiently predicting, distributing and sharing the context-aware information. In this paper, Vehicle-to-Infrastructure (V2I) based on communication between vehicle and a Road Side Units (RSU) and Vehicle-to-Vehicle (V2V) based on communication between vehicles are effectively combined in a new MAC architecture and V2I and V2V vehicles collaborate in management. As a result, many vehicles and RSU can use more efficiently the resource and send data rapidly. The simulation results show that the proposed method can achieve high resource utilization in accordance. Also we can find out the optimal transmission relay time and 2nd relay vehicle selection probability value to spread out V2V/V2I collaborative schedule message rapidly.
It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.
Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
Journal of Korean Society of Water and Wastewater
/
v.33
no.5
/
pp.353-366
/
2019
This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.
KIPS Transactions on Software and Data Engineering
/
v.10
no.10
/
pp.391-398
/
2021
Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.1
/
pp.28-34
/
2019
Solar energy is one of the most abundant renewable energy sources on Earth but there are restrictions on the use of solar thermal energy due to the time-discrepancy between the solar-rich season and heating demand. In Europe and Canada, a seasonal solar thermal energy storage (SSTES), which stores the abundant solar heat in the summer and uses the heat for the winter heating load, is used. Recently, SSTES has been introduced in Korea and empirical studies are actively underway. In this study, a $2,000m^2$ flat plate type solar collector and $20,000m^2$ of borehole thermal energy storage (BTES) were studied for a greenhouse in Hwaseong City, which has a heating load of 2,164 GJ/year. To predict the dynamic performance of the system over time, it was simulated using the TRNSYS 18 program, and the solar fraction of the system with the control conditions was investigated. As a result, the solar BTES system proposed in this study showed an average solar fraction of approximately 60% for 5 years when differential temperature control was applied to both collecting solar thermal energy and discharging BTES. The proposed system simplified the configuration and control method of the solar BTES system and secured its performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.