• Title/Summary/Keyword: Optimal operation method

Search Result 1,002, Processing Time 0.036 seconds

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

Artifacts and Troubleshooting in Intraoperative Neurophysiological Monitoring (수술중신경계감시검사에서 발생하는 인공산물의 종류와 해결 방법)

  • Lim, Sung Hyuk;Kim, Kap Kyu;Jang, Min Hwan;Kim, Ki Eob;Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.122-130
    • /
    • 2021
  • The types of artifacts that are observed in intraoperative neurophysiological monitoring (INM) is truly diverse. The removal of artifacts that interfere with the examination is essential. In addition, improving the quality of the examination by removing artifacts is a reflection of the competency of the examiner and is also the best way to ensure patient safety. However, if knowledge of the equipment or anesthesia in the operating room is insufficient due to lack of experience, artifacts cannot be removed even with a method appropriate to the situation. If artifacts are not separated and removed, the reading of the examination results in confusion in the operation process. This can be a fatal problem in neurosurgery that requires rapid and sophisticated procedures. In this paper, the causes of artifacts that occur during surgery are classified into electrical factors, non-electrical factors, and other factors, and a method and examination method for removing artifacts according to the specific situation is mentioned. Although the operating room environment is a very critical place to simultaneously consider various scenarios, we hope that a stable and optimal INM will play a role by knowing the types and causes of various artifacts and how to tackle them.

Design and Analysis of Efficient Operation Sequencing in FMC Robot Using Simulation and Sequential Patterns (시뮬레이션과 순차 패턴을 이용한 FMC 로봇의 효율적 작업 순서 설계 및 분석)

  • Kim, Sun-Gil;Kim, Youn-Jin;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2021-2029
    • /
    • 2010
  • This paper suggested the method to design and analyze FMC robot's dispatching rule using the Simulation and Sequential Patterns. To do this, first of all, we built FMC using simulation and then, extracted signals that facilities call a robot, saved it as the log type. Secondly, we built robot's optimal path using the Sequential Pattern Mining with the results of analyzing the log and relationship between machine and robot actions. Lastly, we adapted it to the A corp.'s manufacturing line for verifying its performance. As a result of applying the new dispatching rule in FMC, total throughput and total flow time decrease because of decreasing material loss time and increasing robot utility. Furthermore, because this method can be applied for every manufacturing plant using simulation, it can contribute to advance total FMC efficiency as well.

Crew Schedule Optimization by Integrating Integer Programming and Heuristic Search (정수계획법과 휴리스틱 탐색기법의 결합에 의한 승무일정계획의 최적화)

  • Hwang, Jun-Ha;Park, Choon-Hee;Lee, Yong-Hwan;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.195-205
    • /
    • 2002
  • Crew scheduling is the problem of pairing crews with each of the vehicles in operation during a certain period of time. A typical procedure of crew schedule optimization consists of enumerating all possible pairings and then selecting the subset which can cover all the operating vehicles, with the goal of minimizing the number of pairings in the subset. The linear programming approach popularly adopted for optimal selection of pairings, however, is not applicable when the objective function cannot be expressed in a linear form. This paper proposes a method of integrating integer programming and heuristic search to solve difficult crew scheduling problems in which the objective function cannot be expressed in linear form and at the same time the number of crews available is limited. The role of heuristic search is to improve the incomplete solution generated by integer programming through iterative repair. Experimental results show that our method outperforms human experts in terms of both solution quality and execution time when applied to real world crew scheduling Problems which can hardly be solved by traditional methods.

Case report of a newly designed narrow-diameter implant with trapezoid-shape for deficient alveolar bone (좁은 치조골에서 사다리꼴형 디자인으로 개발된 단폭경임플란트의 증례 보고)

  • Lee, Sa Ya;Goh, Mi-Seon;Ko, Seok-Yeong;Yun, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.56 no.5
    • /
    • pp.263-276
    • /
    • 2018
  • Long-term survival and prognosis of narrow-diameter implants have been reported to be adequate to consider them a safe method for treating a deficient alveolar ridge. The objective of this study was to perform case report of narrow-diameter implants with a trapezoid-shape in anterior teeth alveolar bone. A 50-year-old male patient presented with discomfort due to mobility of all of the maxillary teeth and mandibular incisors. Due to destruction of alveolar bone, four anterior mandibular teeth were extracted. Soft tissue healing was allowed for approximately 3 months after the extraction, and a new design of implant placement was planned for the mandibular incisor area, followed by clinical and radiological evaluation. Implant placement was determined using an R2GATE surgical stent. The stability of the implants was assessed by ISQ measurements at the first and second implant surgery and after prosthetic placement. At 1 and 3 months and 1 year after implantation of the prosthesis, clinical and radiological examinations were performed. Another 50-year-old male patient presented with discomfort due to mobility of the mandibular central incisors. For the same reason as in the first patient, implant placement was carried out in the same way after extraction. ISQ measurements and clinical and radiological examinations were performed as in the previous case. In these two clinical cases, 12 months of follow-up revealed that the implant remained stable without inflammation or additional bone loss, and there was no discomfort to the patient. In conclusion, computer-guided implant surgery was used to place an implant in an optimal position considering the upper prosthesis. A new design of a narrow-diameter implant with a trapezoid-shape into anterior mandibular alveolar bone is a less invasive treatment method and is based on the contour of the deficient alveolar ridge. Through all of these procedures, we were able to reduce the number of traumas during surgery, reduce the operation time and total treatment period, and provide patients with more comfortable treatment.

  • PDF

Development and Performance of Cutting and Crushing Instrument of Hair to Prevent Blocking U-trap in Home Drainage System (하수구 막힘 방지를 위한 모발 절단 분쇄 장치 개발 및 성능평가)

  • Kim, Donhue
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.394-399
    • /
    • 2013
  • The recalcitrant hairs which are accumulated in the U-trap equipped to prevent the stench from the drainage produce the phenomenon of blocking the flow of water through the home drainage pathway. The chemical dissolution solutions commercially manufactured are excessively poured into U-trap to solve this blocking problem. In this study, the specially designed instrument was developed for the experiments to cut and crush the hairs of which main component are the recalcitrant keratin proteins. The performance of the instrument for cutting and crushing hairs was investigated using experimental methods. The cutting and weighing method was used in order to obtain the average length of a large amount of hairs cut by instrument. This method is relatively simple to measure the weight of cutting hairs to obtain the average length of the fibers, the values of average length showed not greater tolerances. Also the average cutting number was defined to evaluate the performance of the cutting and crushing instruments designed for this study. We were able to apply these evaluation methods to provide the criteria to obtain the optimal structure of instrument and proper operation time in the given experimental conditions. These experimental methods and results will provide the good example to design and to analyze the various device that can be used for cutting the fibers. The cutting and crushing instrument developed in this study showed the effective abilities to cutting the hairs. The general using the cuttting and crushing instrument at every home would be helpful to prevent water environmental pollution.

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Study on the Determinants Affecting Global Tramper Companies' Bunkering Port Selection Using AHP Method (AHP를 활용한 부정기선사의 벙커링 항만 선정요인에 대한 연구)

  • Ahn, Ji Young;Ryu, Hee Chan;Lee, Choong-bae
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.3
    • /
    • pp.15-28
    • /
    • 2022
  • Bunkering refers to the supply of bunker fuel necessary for the ship operation, as well as minimizing the price and supply cost of fuel itself, and includes supplying good quality fuel oil in a timely manner and at the optimal port. Bunkering is an important criterion in terms of cost for shipping companies because bunkering involves a significant cost to the purchaser of bunkering from the time of initial purchase. This study aims to prioritize selection criteria for tramper companies to call port for bunkering. For this study, the variables were selected by analyzing the common criteria such as price, location, bunker quality and service and infrastructure etc. employed in previous studies. The AHP method was employed to prioritize the criteria in order. As a result of the analysis, the high level factors appeared in the order of price, location, bunkering quality and port service and infrastructure factors. The importance of price criterion and location criterion was found to be high. In the low level criterion of price, the bunker price per MT was ranked first in importance. In terms of location criteria, the location on the main trade route was high. In the low criteria of bunker quality and port service, the bunkering available types and bunker quality were found to be important factors, and in the low level criteria of infrastructure, anchorage and availability of bunkering during loading and discharging and port security factors were found to be important criteria. This study provides the guidelines for research designed to compare the bunkering port selection factors and to derive their importance suggesting the ways to enhance competitiveness as a bunkering port.

A Numerical Study for Effective Operation of MSW Incinerator for Waste of High Heating Value by the Addition of Moisture Air (함습공기를 이용한 고발열량 도시폐기물 소각로의 효율적 운전을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Shin, Na-Ra;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • Stoker type incinerator is one of the most popular one used as municipal solid waste (MSW) incineration because, in general, it is quite suitable for large capacity and need no preprocessing facility. Nowadays, however, since the combustible portion of incoming MSW increases together with the decrease of the moisture content due to prohibition of directly burying food waste in landfill, the heating value of waste is remarkably increasing in comparison with the early stage of incinerator installation. Consequently, the increased heating value in incinerator operation causes a number of serious problems such as reduction of waste amount to be burned due to the boiler heat capacity together with the significant NO generation in high temperature environment. Therefore, in this study, a series of numerical simulation have been made as parameters of waste amount and the fraction of moisture in air stream in order to investigate optimal operating condition for the resolution of the problems associated with the high heating value of waste mentioned above. In specific, a detailed turbulent reaction flow field calculation with NO model was made for the full scale incinerator of D city. To this end, the injection method of moisturized air as oxidizer was intensively reviewed by the addition of moisture water amount from 10% and 20%. The calculation result, in general, showed that the reduction of maximum flame temperature appears consistently due to the combined effects of the increased specific heat of combustion air and vaporization heat by the addition of water moisture. As a consequence, the generation of NOx concentration was substantially reduced. Further, for the case of 20% moisture amount stream, the afterburner region is quite appropriate in temperature range for the operation of SNCR. This suggests the SNCR facility can be considered for reoperation. which is not in service at all due to the increased heating value of MSW.