• 제목/요약/키워드: Optimal operation conditions

검색결과 463건 처리시간 0.035초

토사운반 공정의 스크레이퍼 중심 최적 장비조합에 관한 연구 (A Study on Optimal Equipment Fleet focused on Pusher-loaded Scrapers in Earthmoving Operation)

  • 이형국;손창백;이동은
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.39-42
    • /
    • 2012
  • Pusher-Loaded Scrapers are important construction equipment for large earthmoving operations. Production rates of a Pusher-Loaded Scraper vary greatly in accordance with the temperature or elevation, the equipment performance, haul speed, haul-road conditions, the method of loading, and Number of scrapers per one pusher. Determining of most economical scrapers fleet regarding the size of equipment, model name, and number of scrapers demands time-consuming calculation because it needs to reference of varied performance charts or tables and repeat complicated calculation. In this study, decision-making support system for the Optimal Pusher-loaded Scrapers Fleet is suggested for the purpose of calculating easily and handling effectively variables which are changed depend of the work conditions. The prototype of this program is developed using MATLAB. And the Database of Pusher-loaded Scraper embodies Performance chart & Retarder chart, soil properties, and calculation-support table.

  • PDF

생전분 직접 당화용 회전 원통형 Bioattritor의 조작조건과 동력소모량의 검토 (Evaluation of Operation Condition and Power Consumption of the Rotating Drum Type Bioattritor for Direct Saccharification of Raw Starch)

  • 박진서;이용현
    • 한국미생물·생명공학회지
    • /
    • 제21권2호
    • /
    • pp.157-162
    • /
    • 1993
  • Raw starch can be effectively saccharified in an enzyme reaction system containing sttrition-milling media. In order to develop an effcient attrition-coupled bioreactor(bioattritor), a rotating drum type bioattitor was construced, and its optimal operation conditions and power consumptions were evaluated. The optimal conditions for 3l bioattritor were 4 baffled, baffle size of 1:0.05 (the ratio of drum diameter to baffle), drum rotation speed of 100 rpm, and 1.33g of 3 mm glass bead/g of raw corn starch.

  • PDF

표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화 (Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces)

  • 정지훈;김정석;김평호;구준영;임학진;이종환
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

Cycle-to-Cycle Fluctuations in a Spark Ignition Engine at Low Speed and Load

  • Han, Sung Bin;Hwang, Sung Il
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.205-210
    • /
    • 2013
  • Cycle-to-cycle variation has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. At a part load, some of the cycles tend to knock, while others may have incomplete combustion by the time the exhaust valve opens. An experimental study has been performed in order to evaluate the relative contribution of several relevant parameters on the cyclic variability in spark ignition engines. In general, the stability of engine operation is improved with fuel injector according to the optimal injection timing, but the stability of engine operation at idle is not improved compared with a practical gasoline engine. In this study, we investigated the relationship of the effect of operating conditions for the stability at low speed and load.

부산지역 대형병원 냉방장비의 용량설정 실태조사 (Survey Study of Optimal Cooling Equipment Capacity of the Large Hospitals in Busan City)

  • 이지원;진경일;김세환
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.105-110
    • /
    • 2014
  • The basic factors determining the amount of energy used in hospital buildings are weather conditions and building factors. But the real energy consumer is central plant equipment such as boilers and chillers that produce thermal energy for heating and cooling. Inaccurate decision of the primary equipment's size can cause a high initial-cost, an excessive equipment space, a wasted energy by low operation-efficiency and shortening of the machine's life. In this reason, the decision of optimal size for central plant equipment is very important. There are several factors for the decision such as an operation factor, a factor (equipment factor), piping losses and a simultaneous usage factor applied in the sizing process except a basic cooling load. But there is no standard method for applying those factors. Usually, factors are applied individually by an experience or custom of each engineer. In this study, the authors emphasize the meaning and the problem of those factors, examine them by analyzing factors which were applied to actual practices, and propose the recommendation value of safety, load, operation factors and application methods.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

운행시간 및 수요 기반 버스 최적배차간격 산정에 관한 연구 (Optimal Headways of Urban Bus Services, Reflecting Actual Cycle Time and Demand)

  • 김수정;신용은
    • 대한토목학회논문집
    • /
    • 제38권1호
    • /
    • pp.167-174
    • /
    • 2018
  • 본 연구는 현실 적용성을 고려한 버스 최적 배차간격 모형 구축을 통해 현실적 운행계획 작성에 기여하고자 한다. 부산시가 제시한 시내버스 운행계획의 적정성 검토를 통해, 배차간격 및 운행시간이 현실적 여건을 고려하지 않고 계획되어 있음을 파악하였다. 이에 실제 도로 여건과 운행환경을 고려한 운행시간 제약조건과 해당 노선의 수요 충족을 위한 시간대별 배차간격 도출 모형을 구축하였고 부산시 10번과 27번 노선을 사례로 모형의 적용성을 검증하였다. 본 연구는 교통카드 및 BIMS (Bus Information Management System)가 제공하는 방대한 자료(Big-Data)로부터 필요 정보를 추출하였으며, 그 과정에서 분석에 필요한 자료와 정보 추출 과정도 요약 제시하였다. 본 연구의 결과는 현실적 운행계획 작성과 향후 보다 정밀한 여건을 고려한 연구에 기여할 것으로 기대한다.

전동열차의 운행에너지 절감을 위한 최적 운행 패턴 모델링 (Modeling of the Optimal Operation Pattern for Energy Saving of The Trains)

  • 김정현;이세훈;전상표
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권12호
    • /
    • pp.187-196
    • /
    • 2014
  • 본 논문에서는 고정된 역간 거리를 정해진 운전 시분내에 주행에너지를 최소화하며 주행하는 열차의 특성을 파악하고 수학적으로 모델링한다. 도시철도차량 자동주행에 일반적으로 사용되는 PID제어기 대신 목표값에 추종하면서도 자동 주행 중 소비에너지가 최소화되도록 최적제어기를 사용하여 철도 차량를 모델링하였으며 실제 동일한 운행조건하에서 설계한다. 실제 선로 조건을 적용하여 별도의 차상장치나 선로주변시설 없이도 자동운전 중 주행에너지를 최소하여 주행에너지를 절감하고자 한다. 따라서 8호선 실 노선 구간별 운전시분 내에서 실측 데이터 분석을 위해 직선구간/구배구간/곡선구간 등 구간을 선정하고 그 구간에서 열차의 운행패턴에 따라 에너지를 절감하는 열차운행을 방법을 제시하였다.

시뮬레이션에 의한 PV시스템 설치방식의 최적설계에 관한 연구 (A Study on Optimal Design of PV System Installation by Simulation)

  • 소정훈;유권종;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 2003
  • This paper compares the operation characteristics of PV(Photovoltaic) system by computer simulation with those of real PV system and the operation characteristics of PV system by computer simulation are evaluated and analyzed considering system parameters of specifications, installation and surrounding conditions etc. From the basis of these results, this study will intend to develop an evaluation, analysis tool and construct database for optimal design of PV system.