• Title/Summary/Keyword: Optimal number of interfaces

Search Result 37, Processing Time 0.023 seconds

A Study on the Optimal Number of Interfaces in Wireless Mesh Network (무선 메쉬 네트워크에서 인터페이스 수와 성능에 관한 연구)

  • Oh, Chi-Moon;Kim, Hwa-Jong;Lee, Goo-Yeon;Jeong, Choong-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, we obtain the optimal number of interfaces/channels in wireless mesh networks by simulation. The simulation study is done in static multi-channel multi-interface environment. When many nodes use a single interface and channel and contend for the channel, collisions of RTS/CTS results in network performance degradation. To avoid such degradation and reduce interferences between the adjacent nodes, use of multi-interface/channel is considered. 802.11a and 802.11b systems offer 12 and 3 orthogonal channels respectively and multi-interface/channel scheme could be applied. But rare research about the optimal number of interfaces/channels has been studied. Therefore, in this paper, simulation study for the optimal number of interfaces/channels in wireless mesh network is made.

Simulated Annealing Based Vehicle Routing Planning for Freight Container Transportation (화물컨테이너 운송을 위한 시뮬레이티드 어닐링 기반의 차량경로계획)

  • Lee, Sang-Heon;Choi, Hae-Jung
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.204-215
    • /
    • 2007
  • This paper addresses vehicle routing planning in freight container transportation systems where a number of loaded containers are to be delivered to their destination places. The system under consideration is static in that all transportation requirements are predetermined at the beginning of a planning horizon. A two-phased procedure is presented for freight container transportation. In the first phase, the optimal model is presented to determine optimal total time to perform given transportation requirements and the minimum of number of vehicles required. Based on the results from the optimal model, in the second phase, ASA(Accelerated Simulated Annealing) algorithm is presented to perform all transportation requirements with the least number of vehicles by improving initial vehicle routing planning constructed by greedy method. It is found that ASA algorithm has an excellent global searching ability through various experiments in comparison with existing methods.

Analytical Models for the Optimal Number and the Optimal Operation of Yard Trucks in Container Terminal (컨테이너 터미널의 야드 트럭의 최적 대수와 최적 운행을 위한 해석 모형)

  • Kim, Ki-Young
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.498-503
    • /
    • 2007
  • The synchronized operation of a quay crane(QC) and a transfer crane(TC) increases the productivity of a container terminal. In this paper, analytical models are suggested for the optimal number and the optimal operation of the yard trucks (YTs) which travel between a quay crane and a transfer crane in a container terminal. YT may represent yard tractor, AGV and shuttle carrier. The analytical models are so simple and useful that the analysis and the results of this paper can be used not only in container terminal practices but also in many other application fields.

Fleet Sizing and Vehicle Routing for Static Freight Container Transportation (정적 환경의 화물컨테이너 운반 시스템에서의 차량 대수 및 경로 계획)

  • Koo, Pyung-Hoi;Jang, Dong-Won;Lee, Woon-Seek
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.174-184
    • /
    • 2003
  • This paper addresses a fleet operation planning problem for a static freight container transportation system in which all the transportation requirements are predetermined at the beginning of a planning horizon. In the transportation system under consideration, a number of loaded containers are to be moved between container storage yards. An optimal fleet planning model is used to determine the minimum number of vehicles required. Based on the results from the optimal model, a tabu-search based algorithm is presented to perform a given transportation requirements with the least number of vehicles. The performance of the new procedure is evaluated through some experiments in comparison with two existing methods, and the it is found that our procedure produces good-quality solutions.

Evaluation of Tool Paths and NC Codes Generation for PCB Drilling Operations (PCB 홀 천공순서의 평가 및 NC 코드의 생성)

  • Choi, Hoo-Gon;Lee, Ho-Chan;Seo, Jun-Sung
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.223-235
    • /
    • 1997
  • The process of determining the optimal tool path in PCB(printed circuit board) drilling operations is identical with that of solving a TSP(traveling salesman problem). However, the optimal solution will be ruined when a drill bit needs tracking back in its tool paths. The back tracking occurrences shorten a life of the main spindle and result in inaccurate mechanical movements. In this study, the performances of four heuristics(Nearest Neighbor, Convex Hull, Greatest Angle and Most Eccentric Ellipse) are evaluated to obtain feasible tool paths along with less number of back trackings for a large number of holes(more than 2000holes/bit) and to generate corresponding NC codes for a given CNC drill. Also, the operations of these algorithms are visualized to show a user the graphic image of tool visitation with PCB holes on a computer screen.

  • PDF

Optimal Design of Tire Tread Pattern Using Quality Engineering (품질공학을 이용한 트레드 패턴 인자의 최적설계)

  • Jeon, Tae-Joon;Kim, Soo-Dong;Park, Sung-Ho
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The tread pattern of tire is represented by a great number of design factors, such as groove breadth of circumference direction, breadth direction, rib breadth, block length, kerfs, tread breadth and tread radius, etc. It is not efficient in time and cost to analyze the rolling resistance for a great number of real tread pattern, because It requires lots of pattern forming handwork. In order to optimize tread pattern for rolling resistance, the experiment is planed and analyzed by Taguchi's robust design methods. We identified the important design factors for Rolling Resistance, determined the optimal condition and calculated prediction value which is related. Using the experiment data and the analyzed data, we developed the program which could predict Rolling Resistance. It is expected that time and cost may be reduced in designing and developing new tire tread pattern.

  • PDF

Vehicle Scheduling for Inland Container Transportation (컨테이너 내륙 운송을 위한 차량 일정 계획의 수립)

  • Lee, Hee-Jin;Lee, Jeong-Hun;Moon, Il-Kyeong
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.525-538
    • /
    • 2007
  • The importance of efficient container transportation becomes more significant each year due to the constant growth of the global marketplace, and studies focusing on shipping efficiency are becoming increasingly important. In this paper, we propose an approach for vehicle scheduling that decreases the number of vehicles required for freight commerce by analyzing and scheduling optimal routes. Container transportation can be classified into round and single-trip transportation, and each vehicle can be linked in a specific order based on the vehicle state after completing an order. We develop a mathematical model to determine the required number of vehicles with optimal routing, and a heuristic algorithm to perform vehicle scheduling for many orders in a significantly shorter duration. Finally, we tested some numerical examples and compared the developed model and the heuristic algorithm. We also developed a decision support system that can schedule vehicles based on the heuristic algorithm.

A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis (반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구)

  • Min, Byeong-Hyeon;Lee, Kyeong-Don;Yu, Byung-Kil
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF

Determination of the Optimal Configuration of Operation Policies in an Integrated-Automated Manufacturing System Using the Taguchi Method and Simulation Experiments (다구치방법과 시뮬레이션을 이용한 통합된 자동생산시스템의 최적운영방안의 결정)

  • Lim, Joon-Mook;Kim, Kil-Soo;Sung, Ki-Seok
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.23-40
    • /
    • 1998
  • In this paper, a method to determine the optimal configuration of operating policies in an integrated-automated manufacturing system using the Taguchi method and computer simulation experiments is presented. An integrated-automated manufacturing system called direct-input-output manufacturing system(DIOMS) is described. We only consider the operational aspect of the DIOMS. Four operating policies including input sequencing control, dispatching rule for the storage/retrieval(S/R) machine, machine center-based part type selection rule, and storage assignment policy are treated as design factors. The number of machine centers, the number of part types, demand rate, processing time and the rate of each part type, vertical and horizontal speed of the S/R machine, and the size of a local buffer in the machine centers are considered as noise factors in generating various manufacturing system environment. For the performance characteristics, mean flow time and throughput are adopted. A robust design experiment with inner and outer orthogonal arrays are conducted by computer simulation, and an optimal configuration of operating policies is presented which consists of a combination of the level of each design factor. The validity of the optimal configurations is investigated by comparing their signal-to-noise ratios with those obtained with full factorial designs.

  • PDF

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.