• Title/Summary/Keyword: Optimal normal basis

Search Result 62, Processing Time 0.021 seconds

System Development for the estimation of Pollutant Loads on Reservoir

  • Shim, Soon-Bo;Lee, Yo-Sang;Koh, Deuk-Koo
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.35-46
    • /
    • 1999
  • An integrated system of GIS and water quality model was suggested including the pollutant loads from the watershed. The developed system consits of two parts. First part is the information on landuse and several surface factors concerning the overland flow processes of water and pollutants. Second part is the modeling modules which include storm event pollutant load model(SEPLM), non-storm event pollutant load model(NSPLM), and river water quality simulation model(RWQSM). Models can calculate the pollutant load from the study area. The databases and models are linked through the interface modules resided in the overall system, which incorporate the graphical display modules and the operating scheme for the optimal use of the system. The developed system was applied to the Chungju multi-purpose reservoir to estimate the pollutant load during the four selected rainfall events between 1991 and 1993, based upon monthly basis and seasonal basis in drought flow, low flow, normal flow and wet flow.

  • PDF

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

An improved fuzzy c-means method based on multivariate skew-normal distribution for brain MR image segmentation

  • Guiyuan Zhu;Shengyang Liao;Tianming Zhan;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2082-2102
    • /
    • 2024
  • Accurate segmentation of magnetic resonance (MR) images is crucial for providing doctors with effective quantitative information for diagnosis. However, the presence of weak boundaries, intensity inhomogeneity, and noise in the images poses challenges for segmentation models to achieve optimal results. While deep learning models can offer relatively accurate results, the scarcity of labeled medical imaging data increases the risk of overfitting. To tackle this issue, this paper proposes a novel fuzzy c-means (FCM) model that integrates a deep learning approach. To address the limited accuracy of traditional FCM models, which employ Euclidean distance as a distance measure, we introduce a measurement function based on the skewed normal distribution. This function enables us to capture more precise information about the distribution of the image. Additionally, we construct a regularization term based on the Kullback-Leibler (KL) divergence of high-confidence deep learning results. This regularization term helps enhance the final segmentation accuracy of the model. Moreover, we incorporate orthogonal basis functions to estimate the bias field and integrate it into the improved FCM method. This integration allows our method to simultaneously segment the image and estimate the bias field. The experimental results on both simulated and real brain MR images demonstrate the robustness of our method, highlighting its superiority over other advanced segmentation algorithms.

A STUDY ON THE CHANCES OF CONDYLAR POSITION AFTER USE OF THE OCCLUSAL BITEPLANE SPLINT (교합안정장치 사용후 하악과두의 위치변화에 관한 연구)

  • Song, Yeong-Bock;Kim, In-Kwon;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.26 no.1
    • /
    • pp.171-184
    • /
    • 1988
  • The establishment of an optimal and functional condylar position (centric relation) as the therapeutic and diagnostic reference position during occlusal treatment for patients with temporomandibular joint and muscle pain. dysfunction has long been an important subject in dentistry. The objective of this study was to compare the reproducibility md the changes of condylar position in normal group to those in patient group after use of the occlusal biteplane splint. For this study, 11 normal adults who had no symptoms of masticatory dysfunction and 18 patients who had visited at the department of occlusion in dental infirmary of Yonsei University were selected. For each subject three centric relation records were recorded before treatment, after 2 weeks and after symptoms were improved. And the condylar positions in centric relation were measured using articulators and a Vericheck. On the basis of this study, the following results were obtained. 1. In normal group, there was no significant difference of reproducibility in condylar position before and after the use of the occlusal biteplane splint for 2 weeks. 2. In patient group there was significant improvement in the reproducibility of condylar position after treatment (P<0.01). The reproducibility in patient group, however, was less than normal group. (P<0.01) 3. The mean distance of condylar movements was $0.38{\pm}0.22mm$ after 2 weeks in normal group. 4. In patient group, condylar movements were $1.36{\pm}0.70mm$ (P<0.01), significantly different from normal group. (P<0.01) 5. In patient group, the main direction of condylar movements after treatment was toward anterior and superior, preponderance being at superior direction.

  • PDF

Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems (개선된 역수연산에서의 멀티 쉬프팅 알고리즘)

  • Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • This paper proposes an efficient inversion algorithm for Galois field GF(2n) by using a modified multi-bit shifting method based on the Montgomery algorithm. It is well known that the efficiency of arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. An inversion algorithm, which modifies a multi-bit shifting based on the Montgomery algorithm, is studied. Trinomials and AOPs (all-one polynomials) are tested to calculate the inverse. It is shown that the suggested inversion algorithm reduces the computation time up to 26 % of the forgoing multi-bit shifting algorithm. The modified algorithm can be applied in various applications and is easy to implement.

  • PDF

Isogeometric Shape Design Sensitivity Analysis of Mindlin Plates (민들린 평판의 아이소-지오메트릭 형상 설계민감도 해석)

  • Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • In this paper, a shape design sensitivity analysis(DSA) method is presented for Mindlin plates using an isogeometric approach. The isogeometric method possesses desirable advantages; the representation of exact geometry and the higher order inter-element continuity, which lead to the fast convergence of solution as well as accurate sensitivity results. Unlike the finite element methods using linear shape functions, the isogeometric method considers the exact normal vector and curvature of the CAD geometry, taking advantages of higher order NURBS basis functions. A selective reduced integration(SRI) technique is incorporated to overcome the difficulty of 'shear locking' phenomenon. This simple technique is surprisingly helpful for the accuracy of the isogeometric shape sensitivity without complicated formulation. Through the numerical examples of plate bending problems, the accuracy of the proposed isogeometric analysis method is compared with that of finite element one. Also, the isogeometric shape sensitivity turns out to be very accurate when compared with finite difference sensitivity.

An Expert System for Optimal Network Reconfiguration in Distribution Systems (배전계통의 최적 회로재구성을 위한 전문가 시스템)

  • Yoon, Yong-Han;Kim, Jae-Chul;Jang, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.71-74
    • /
    • 1991
  • This paper is described an expert system which performs the network reconfiguration in order to operate distribution systems optimally using heuristic rules. The proposed network reconfiguration is able to not only eliminate abnormal states such as overload of transformers/lines and low voltage violation, but also achieve minimum power loss and optimum load balancing under normal states. In order to apply the network reconfiguration efficiently, an expert system is adopted a best-first tree searching strategy on the basis of heuristics, and is implemented in AI language Turbo PROLOG. Several examples are used to illustrate concepts described above.

  • PDF

Generator Penalty Factor Calculation including Slack Bus by Reference Angle Re-Specification (위상각 기준모선의 이동에 의한 Slack 모선을 포함한 모든 발전기의 Penalty 계수 계산방법)

  • Lee, Sang-Joong;Kim, Kern-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.49-51
    • /
    • 2000
  • ln this paper, a method by which penalty factors of all generators including slack bus can be directly derived is presented. With a simple re-assignment of angle reference bus to a bus where no generation exists, penalty factors for slack bus is obtained without any physical assumption. While previous Jacobian-based techniques for generator penalty factor calculation have been derived with basis upon reference bus, proposed method are not dependent on reference bus and calculated penalty factors can be substituted directly into the general ELD equation to compute the economic dispatch. Equations for system loss sensitivity, penalty factors and optimal generation allocation are solved simultaneously in normal power flow computation.

  • PDF