• Title/Summary/Keyword: Optimal manufacturing conditions

Search Result 468, Processing Time 0.03 seconds

Investigation of Cutting Conditions for Stable Machining and Machinability Evaluation in Milling Process of Al7050-T7451 by Response Surface Methodology (Al7050-T7451 소재의 밀링가공에서 반응표면법에 의한 가공성평가 및 가공안정화를 위한 절삭조건선정)

  • Koo, Joon-Young;Cho, Mun-Ho;Kim, Hyuk;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.284-290
    • /
    • 2014
  • Aluminum alloy is a core material for structural parts of aircraft and automobiles to reduce the weight and maintain high specific strength. This study evaluates the machinability and investigates the optimal cutting conditions considering the surface integrity and productivity for Al7050-T7451 milling. The machining variables considered are the feed per tooth, spindle speed, axial depth of the cut, and radial depth of the cut. The machinability evaluation of Al7050-T7451 is conducted by analyzing the cutting force signals, acceleration signals, AE signals, and machined surface conditions. The optimal cutting conditions are determined by analyzing the experimental results using response surface methodology for stable machining considering the productivity and surface integrity.

Determination of an optimal operation condition in continuous manufacturing process (일관제조공정에서의 최적 조업조건의 도출)

  • 김윤호;최해운
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.111-120
    • /
    • 1993
  • The most important factors for a product to survive in the market are cost and quality. In recent years, quality proceeds to cost. There are many techniques of use to improve the quality of a product. One of the techniques is applying statistical methods (especially Taguchi method) to real operational conditions for a continuous manufacturing process in P company. There are 91 factors to control in the process. So, we predetermined 7 main effect factors and 6 interactive effect factors by statistical methods and advices of engineers. With these 13 factors, we determined the optimal level of operations for the process.

  • PDF

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구)

  • Hyo-Eun Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

A Study on the Perforating Process of the Muffer Tube using FEM

  • Han Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.275-280
    • /
    • 2005
  • Recently there has been a growing interest in the design and manufacturing of the muffler tube due to the strict environment regulations, A muffler is an important part used to reduce noise and to purify exhaust gas in cars and heavy equipment. The shape of the muffler tube and the number of the tube hole has been made variously according to the weight and function of the car. The perforating technique of the muffler tube has a great influence on the manufacturing cost. In this study, metal forming analysis has been carried out to investigate the perforating process for the muffler tube and predict an optimal forming conditions of the muffler tube, Also its simulation results by the finite element method were reflected to the die design and the manufacturing system for the muffler tube. The perforating process is performed in the longitudinal direction of the tube. According to the simulation results, when the shear angle of punch was similar to the tube curvature, the optimal shape was obtained. Also when the clearance of die was 0.2mm, the burr was minimized and optimal shear section was obtained.

An Optimal Design Method on system of Flexible Manufacturing Cells(FMCs) using Simulation Technology

  • Lee, Seung-Hyun;Yoo, Wang-Jin;Yoon, Hee-Jung;Lim, Ik-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.89-97
    • /
    • 1999
  • We are concerned with the optimal design of flexible manufacturing cells in this study, thus try to suggest the detail information for each resource on the optimal conditions. Object oriented simulation technology is used to write models more easily and to execute simulation running time more rapidly, and the optimal level of relevant decision variables is probed by response surface methodology(RSM), which is well known for the optimization technology based on experiment design and regression equation. We investigate the optimal level for the number of pallets and the speed of AGVs of FMC systems, carry out the performance analysis of this system. Consequently we suggest systematic procedures for the optimization of FMCs in detail design stage.

  • PDF

In Vitro Evaluation of Antioxidant Activity of Lycium barbarum Hot Water Extract and Optimization of Production Using Response Surface Methodology

  • Ho-Jong You
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1363-1372
    • /
    • 2023
  • This study is concerned with the optimization of the manufacturing process of a hot water extract containing antioxidant activity from Lycium barbarum, traditionally known to have various physiological activities. For the establishment of the optimization process, the central composite design of response surface methodology(RSM) was used. Thirteen extraction processes were performed by encoding the independent variables, extraction temperature (65.9℃-94.1℃) and extraction time (2.59 hr-5.41 hr). As a result of the experiment, the optimal manufacturing conditions for the extract were 340.0 mg/100 g of GAE at an extraction temperature of 94.1℃ and an extraction time of 5 hr. The maximum yield of flavonoids was 22.44 mg/100 g of HES at an extraction temperature of 94.1℃ and an extraction time of 4 hr. The conditions for producing the extract with the maximum antioxidant capacity (DPPH 92.12%) were 90℃ and 4.5 hr extraction time. Therefore, the optimal manufacturing process conditions for extracts containing total phenol content, flavonoid content, and DPPH radical scavenging activity, which are dependent variables, were extraction temperature of 90-95℃ and extraction time of 4 hr, which were not significantly different from the actual values. Therefore, Lycium barbarum extract rich in total phenol and flavonoid content related to antioxidant function is expected to be used as a functional food and cosmetic material.

Performance Experiment of H-120 Class Fire Damper for Offshore (해양플랜트용 H-120 Class 파이어 댐퍼의 성능 실험)

  • Jang, Sung Cheol;Hur, Nam-Soo;Kim, In-Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • In this paper, a fire resistance test was carried out in accordance with the change of the insulation conditions on the exposed side and unexposed side of a coaming to obtain the optimal insulation conditions for class H-120 insulation in connection with specimen1 of the preceding paper for an evaluation of the fireproof performance of fire dampers according to hydrocarbon fire conditions. In the test results, specimen2(88 mm, $171^{\circ}C$) met the class H-120 insulation conditions, but specimen3(76mm, $181^{\circ}C$) exceeded the thermal insulation acceptance criteria at 110 minutes. Therefore, specimen2(88 mm) represents the optimal insulation conditions as a possible lightweight materialas compared to specimen1. From a comparison of the test results, we concluded that the temperature increase of the coaming insulation surface was influenced by conductive heat from the bulkhead and that the coaming surface was influenced by radiant heat from the blade and coaming.

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF