• Title/Summary/Keyword: Optimal dose

Search Result 573, Processing Time 0.019 seconds

Influence of Low Dose Gamma Radiation on the Growth of Maize(Zea mays L.) Varieties (옥수수 생육에 미치는 저선량 감마선 조사효과)

  • Kim, Jae-Sung;Lee, Young-Keun;Park, Hong-Sook;Back, Myung-Hwa;Kim, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.328-331
    • /
    • 2000
  • Maize (Zea mays L. cv. kosungjaerae and cv. youngwoljaerae) seeds were irradiated with the dose of $0.5{\sim}20$ Gy by $^{60}Co\;{\gamma}-ray$ radiation to investigate the effect of the low dose ${\gamma}-ray$ radiation on the germination rate, early growth and yield. The low dose radiation was able to improve the germination rate and early growth in maize, but the optimal radiation doses were different depended on kinds of cultivars. High stimulatory effect in early growth of maize was observed in 2 Gy irradiation group of kosungjaerae cultivar and in 12 Gy irradiation group of youngwoljaerae cultivar. The optimal radiation dose for the enhancement of yield and yield components in maize was 8 Gy in kosungjaerae cultivar and $4{\sim}12$ Gy in youngwoljaerae cultivar.

  • PDF

Optimal Initial Dose of Chloral Hydrate in Management of Pediatric Facial Laceration

  • Koo, Su Han;Lee, Dong Gwan;Shin, Heakyeong
    • Archives of Plastic Surgery
    • /
    • v.41 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • Background Chloral hydrate (CH) is the primary agent most commonly used for pediatric sedation prior to diagnostic, therapeutic procedures. In the management of pediatric facial laceration, the initial dose of CH has to balance the need for adequate sedation against the need to minimize sedative complications. Methods A retrospective review of medical records of 834 children who visited our emergency room for facial lacerations from August 2010 to September 2012 was conducted. They were divided into six groups on the basis of the initial dose of CH administered. Further, each group was compared with the standard group (70 to ${\leq}80mg/kg$) with respect to sedation success, augmentation dose, failed sedation, time to procedure, and time of stay. Results With respect to the complication rate, only group 1 (range, 40 to ${\leq}50mg/kg$) showed a significantly lower complication rate. In the case of all the other variables considered, there were no significant differences among any of the groups. Conclusions An initial CH dose of $48{\pm}2mg/kg$ does not negatively affect the success rate of sedation or the need for additional sedative during the primary closure of facial lacerations in pediatric patients. Further, lower doses reduce the incidences of adverse effects and do not delay procedure readiness. Therefore, $48{\pm}2mg/kg$ of CH can be considered the optimal initial dose for pediatric sedation.

Noise and Image Quality Analysis of Brain CT Examination (두부 CT검사에서의 노이즈 및 화질분석)

  • Choi, Seok-yoon;Im, In-chul
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study was to find the best protocol for balance of image quality and dose in brain CT scan. Images were acquired using dual-source CT and AAPM water phantom, noise and dose were measured, and effective dose was calculated using computer simulation program ALARA(S/W). In order to determine the ratio of image quality and dose by each protocol, FOM (figure of merits) equation with normalized DLP was presented and the result was calculated. judged that the ratio of image quality and dose was excellent when the FOM maximized. Experimental results showed that protocol No. 21(120 kVp, 10 mm, 1.5 pitch) was the best, the organ with the highest effective dose was the brain(33.61 mGy). Among organs with high radiosensitivity, the thyroid gland was 0.78 mGy and breast 0.05 mGy. In conclusion, the optimal parameters and the organ dose in the protocol were also presented from the experiment, It may be helpful to clinicians who want to know the protocol about the optimum state of image quality and dose.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

Comparing of the Administered Activities and the Effective Dose of the Various Pediatric Dose Formulas of Nuclear Medicine (핵의학검사의 방사성의약품 소아투여량 공식 별 투여량 및 유효선량 비교)

  • Gil, Jong-Won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.147-154
    • /
    • 2017
  • The purpose of this study is to calculate and compare administered activities(MBq) and effective dose(mSv) of the various pediatric dose formulas of pediatric nuclear medicine and to provide base data for the criteria of the optimal administered activities. This study compares dosages and effective doses of 5 types of pediatric dose formulas(Clark rule, Area rule, Webster rule, Young rule, Solomon(Fried) rule) based on the dosage for adults of 2 types of radiopharmaceuticals($^{99m}Tc$-MDP, $^{99m}Tc$-Pertechnetate). The administered activities in adults, which is the criteria for calculating the Pediatric administered activities, used the value from the 'Nuclear Medicine' written by J-G Jeong & M-Ch Lee. and the administered activities by the radioactivity per effective dose(mSv/MBq) of the radiopharmaceuticals for calculating the effective dose used the value from ICRP 80 and the UNSCEAR 2008 Report. As a result of the study, the output of Young rule is the lowest, and its difference between other formulas is from minimum 1.7 times to maximum 3,4 times. The difference between administered activities of $^{99m}Tc$-MDP is maximum 309.9MBq and the effective dose is 3.76mSv. $^{99m}Tc$-Pertechnetate showed the figure at the maximum 154.9MBq and the effective dose has a difference of 5.50mSv. Since the pediatric dose formulas differ not only in administered activities but also in effective doses, the optimal administered activities have to be developed for optimization of medical radiation.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.