• Title/Summary/Keyword: Optimal dispatch

Search Result 130, Processing Time 0.026 seconds

An Approach for Optimal Dispatch Scheduling Incorporating Transmission Security Constraints (송전계통 안전도 제약조건을 반영한 급전계획 알고리즘 개발에 관한 연구)

  • Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.597-602
    • /
    • 2005
  • The introduction of competition in electricity market emphasizes the importance of sufficient transmission capacities to guarantee various electricity transactions. Therefore, when dispatch scheduling, transmission security constraints should be considered for the economic and stable electric power system operation. In this paper, we propose an optimal dispatch scheduling algorithm incorporating transmission security constraints. For solving these constraints, the dispatch scheduling problem is decomposed into a master problem to calculate a general optimal power flow (OPF) without transmission security constraints and several subproblems to inspect the feasibility of OPF solution under various transmission line contingencies. If a dispatch schedule given by the master problem violates transmission security constraints, then an additional constraint is imposed to the master problem. Through these iteration processes between the master problem and subproblems, an optimal dispatch schedule reflecting the post-contingency rescheduling is derived. Moreover, since interruptible loads can positively participate as generators in the competitive electricity market, we consider these interruptible loads active control variables. Numerical example demonstrates efficiency of the proposed algorithm.

A New Dispatch Scheduling Algorithm Applicable to Interconnected Regional Systems with Distributed Inter-temporal Optimal Power Flow (분산처리 최적조류계산 기반 연계계통 급전계획 알고리즘 개발)

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1721-1730
    • /
    • 2007
  • SThis paper proposes a new dispatch scheduling algorithm in interconnected regional system operations. The dispatch scheduling formulated as mixed integer non-linear programming (MINLP) problem can efficiently be computed by generalized Benders decomposition (GBD) algorithm. GBD guarantees adequate computation speed and solution convergency since it decomposes a primal problem into a master problem and subproblems for simplicity. In addition, the inter-temporal optimal power flow (OPF) subproblem of the dispatch scheduling problem is comprised of various variables and constraints considering time-continuity and it makes the inter-temporal OPF complex due to increased dimensions of the optimization problem. In this paper, regional decomposition technique based on auxiliary problem principle (APP) algorithm is introduced to obtain efficient inter-temporal OPF solution through the parallel implementation. In addition, it can find the most economic dispatch schedule incorporating power transaction without private information open. Therefore, it can be expanded as an efficient dispatch scheduling model for interconnected system operation.

A Study on the Security-Constrained Economic Dispatch for Power System (전력계통의 안전도를 고려한 경제급전에 관한 연구)

  • 김경철;최홍규;원진희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.7-14
    • /
    • 2002
  • The economic dispatch is one of the major concerns in case of buying and selling generated powers between electric powers companies. This paper describes the power system security the optimal power flow, and the security-constrained economic dispatch and shows the EDSA\`s active optimal power flow software package is well suited through a simple case study.

A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control (제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘)

  • Song, Gyeong-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

Economic Dispatch Algorithm for Unit Commitment (기동정지계획을 위한 경제급전 알고리즘)

  • Park, Jeong-Do;Lee, Yong-Hoon;Kim, Ku-Han;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1506-1509
    • /
    • 1999
  • This paper presents a new economic dispatch algorithm to improve the unit commitment solution while guaranteeing the near optimal solution without reducing calculation speed. The conventional economic dispatch algorithms have the problem that it is not applicable to the unit commitment formulation due to the frequent on/off state changes of units during the unit commitment calculation. Therefore, piecewise linear iterative method have generally been used for economic dispatch algorithm for unit commitment. In that method, the approximation of the generator cost function makes it hard to obtain the optimal economic dispatch solution. In this case, the solution can be improved by introducing a inverse of the incremental cost function. The proposed method is tested with sample system. The results are compared with the conventional piecewise linear iterative method. It is shown that the proposed algorithm yields more accurate and economical solution without calculation speed reduction.

  • PDF

An Approach to Optimal Dispatch Scheduling Incorporating Transmission Security Constraints

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Balho H.;Kim, Tai-Hoon;Oh, Tae-Kyoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • The introduction of competition in electricity markets emphasizes the importance of sufficient transmission capacities to guarantee effective power transactions. Therefore, for the economic and stable electric power system operation, transmission security constrains should be incorporated into the dispatch scheduling problem. With the intent to solve this problem, we decompose a dispatch scheduling problem into a master problem(MP) and several subproblems(SPs) using Benders decomposition. The MP solves a general optimal power flow(OPF) problem while the SPs inspect the feasibility of OPF solution under respective transmission line contingencies. If a dispatch scheduling solution given by the MP violates transmission security constraints, then additional constraints corresponding to the violations are imposed to the MP. Through this iterative process between the MP and SPs, we derive an optimal dispatch schedule incorporating the post-contingency corrective rescheduling. In addition, we consider interruptible loads as active control variables since the interruptible loads can participate as generators in competitive electricity markets. Numerical examples demonstrate the efficiency of the proposed algorithm.

Optimal Dispatch of Energy and Frequency Regulation Reserve Considering Contingency in a Competitive Electricity Market (경쟁적 전력시장에서 상정사고를 고려한 에너지와 주파수 제어예비력의 최적배분 기법)

  • Lee, Ki-Song;Jeong, Yun-Won;Shin, Joong-Rin;Chun, Yeong-Han;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.202-213
    • /
    • 2006
  • This paper presents a new approach for optimal dispatch of energy and frequency regulation reserve considering contingency in a competitive electricity market. It is necessary to introduce the reserve market with the spot energy market for operating efficiently and obtaining the security of the electricity market. However, the reserve market is closely connected with the energy market since the energy and reserve are produced from the same resources. Thus, it is inevitable to co-optimize the energy and ancillary service for efficient operation of energy and ancillary service market. Therefore, this paper proposes a new method for optimal dispatch of energy and frequency regulation reserve considering n-1 contingency of generator and transmission line using constraints and sensitivity based on AC power flow To verify the effectiveness of the proposed method, the numerical studies have been performed for 5-bus sample system and modified IEEE 14-bus system.

Opposition Based Differential Evolution Algorithm for Dynamic Economic Emission Load Dispatch (EELD) with Emission Constraints and Valve Point Effects

  • Thenmalar, K.;Ramesh, S.;Thiruvenkadam, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1508-1517
    • /
    • 2015
  • Optimal Power dispatch is the short-term decision of the optimal output of a number of power generation facilities, to meet the system demand, with the objective of Power dispatching at the lowest possible cost, subject to transmission lines power loss and operational constraints. The operational constraint includes power balance constraint, generator limit constraint, and emission dispatch constraint and valve point effects. In this paper, Opposition based Differential Evolution Algorithm (ODEA) has been proposed to handle the objective function and the operational constraints simultaneously. Furthermore, the valve point loading effects and transmission lines power loss are also considered for the efficient and effective Power dispatch. The ODEA has unique features such as self tuning of its control parameters, self acceleration and migration for searching. As a result, it requires very minimum executions compared with other searching strategies. The effectiveness of the algorithm has been validated through four standard test cases and compared with previous studies. The proposed method out performs the previous methods.

Security Constrained Optimal Power Flow Incorporating Load Curtailment Schedule (부하차단량을 고려한 상정사고 절약 최적조류계산 알고리즘 개발)

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.801-803
    • /
    • 2005
  • Fundamentally, success of the competitive electricity market is dependent on efficient market design. However, since electricity incorporates various physical constraints as other commodities, the resource assignment (i.e., dispatch scheduling) is also one of requisites for the successful operation of electricity market. Therefore, efficient dispatch scheduling is an important issue to succeed in the deregulated electricity market and the efficiency of this electricity market may be considerably increased by systematic studies on dispatch scheduling algorithm and corresponding constraints, especially system security. Moreover, contrary to traditional vertically-integrated electric power industry condition, since various decision-makings in deregulated electricity market are directly connected with market participants' benefits, only rational dispatch scheduling algorithm can convince these participants. Therefore, it can provide a basis of grievance prevention. In this paper, we propose an algorithm for security constrained dispatch scheduling with respect to load curtailment. Proposed algorithm decomposes the dispatch problem into a master problem corresponding to basecase optimal power flow (OPF) and several subproblems corresponding a series of contingencies using two-stage optimization technique.

  • PDF

A Study on Optimal Power Flow Using Interior Point Method (Interior Point Method를 이용한 최적조류계산 알고리듬 개발에 관한 연구)

  • Kim Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.457-460
    • /
    • 2005
  • This paper proposes a new Interior Point Method algorithm to improve the computation speed and solution stability, which have been challenging problems for employing the nonlinear Optimal Power Flow. The proposed algorithm is different from the tradition Interior Point Methods in that it adopts the Predictor-Corrector Method. It also accommodates the five minute dispatch, which is highly recommenced in modern electricity market. Finally, the efficiency and applicability of the proposed algorithm is demonstrated with a case study.