• Title/Summary/Keyword: Optimal design structure

Search Result 1,475, Processing Time 0.032 seconds

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure (최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링)

  • Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.435-441
    • /
    • 2004
  • This paper deals with modelling and identification of a shipboard stabilized satellite antenna system using the optimal neural network structure. It is difficult for shipboard satellite antenna system to control and identification because of their approximating ability of nonlinear function So it is important to design the neural network with optimal structure for minimum error and fast response time. In this paper, a neural network structure using genetic algorithm is optimized And genetic algorithm is also used for identifying a shipboard satellite antenna system It is noticed that the optimal neural network structure actually describes the real movement of ship well. Through practical test, the optimal neural network structure is shown to be effective for modelling the shipboard satellite antenna system.

Development of Hybrid Prototype Dual Load Cell Structure (하이브리드 프로토타입 듀얼 로드 셀 구조 개발)

  • Ham, Juh-Hyeok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.373-380
    • /
    • 2020
  • We have developed the hybrid prototype load cell structures. These developed load cell structures may increase the reliability of the load sensing by deriving the load values through the double sensing method through the vertical maximum deflection and bending stress of the simple beams. For this purpose, the structure design was performed so that the load value, the deflection and stress value could be output to the same value through the optimal structure design. The structurally designed dimensions reaffirmed the accuracy of the design through the structural analysis program and the matching of the load value and the deflection value. Based on the designed structural dimension, the prototype form was constructed through laser cutting and production using hot rolled steel materials. The developed prototype load cell structure can be used as good educational material in various subjects such as material mechanics, steel structure design, measurement engineering, and mechatronics engineering. It is also believed that the measurement system ideas can inform the occurrence of errors in the event of a problem, and if a major accident caused by a sensing error is predicted, it will show good utilization to prevent accidents.

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

A Study on Optimal Spot-weld Layout Design of the Shock Tower Structure Considering Fatigue Life under Random Vibration Load (불규칙 진동하중을 받는 쇽 타워의 피로수명을 고려한 점용접 위치 최적설계)

  • Lee, Yong-Hoon;Lee, Seung-Yoon;Bae, Bok-Soo;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, optimal spot weld layout design of the shock tower structure is performed for increasing fatigue life of spot weld and fatigue life of shock tower simultaneously. To predict the fatigue life, linear static analysis is conducted then fatigue analysis is performed by applying random vibration load. To optimize the spot weld layout, design variables that have an effect on spot weld fatigue life are selected. Based on the DOE table, spot weld fatigue analysis is conducted. Finally, response surface model is made from fatigue analysis results and optimized spot weld layout model which increases fatigue life of sport weld and fatigue life of shock tower is determined.

  • PDF

Nonlinear Inelastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 비탄성 최적설계)

  • 마상수;김승억
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.145-152
    • /
    • 2003
  • An optimal design method in cooperated with nonlinear inelastic analysis method is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm uses a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used among sections in the database to look for high performance ones. They satisfy the constraint functions and give the lightest weight to the structure. The objective function is set to the total weight of the steel structure and the constraint functions are load-carrying capacities, serviceability, and ductility requirement. Case studies of a three-dimensional frame and a three-dimensional steel arch bridge are presented.

  • PDF

Optimal Design of a Flextensional Transducer Considering All the Cross-coupled Effects of the Design Variables (설계변수들의 상호효과를 고려한 Flextensional 트랜스듀서의 최적설계)

  • 강국진;노용래
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.364-374
    • /
    • 2003
  • The performance of an acoustic transducer is determined by the effects of many design variables. and mostly the influences of these design variables are not linearly independent of each other To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study with the FEM. we analyzed the variation of the resonance frequency and sound pressure of a flextensional transducer in relation to Its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency and sound pressure in terms of the design variables, and with which we determined the optimal structure of the transducer by means of a constrained optimization technique, SQP-PD. The proposed method can reflect all the cross-coupled effects of multiple design variables, and can be utilized to the design of general acoustic transducers.

Design Structure Matrix: An Approach to Reduce Iteration and Acquire Optimal Sequence in Construction Design and Development Projects

  • Akram, Salman;Kim, Jeong-Hwan;Seo, Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.638-641
    • /
    • 2008
  • Design is an iterative, generative, and multidisciplinary process by its nature. Iteration is frequent in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. Contrary to simple design, isolation of the generative iterations in complex design systems is very difficult, but reduction in overall iterations is possible. Design depends upon the information flow within domain and also among various design disciplines and organizations. Therefore, it is suggested that managers should be aware about the crucial iterations causing rework and optimal sequence as well. In this way, managers can handle design parameters related to such iterations proactively. Numbers of techniques are available to reduce iterations for various kinds of engineering designs. In this paper, parameter based Design Structure Matrix (DSM) is chosen. To create this DSM, a survey was performed and then partitioned using a model. This paper provides an easy approach to those companies involved in or intend to be involved in "design and build projects."

  • PDF

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.