• 제목/요약/키워드: Optimal design and operation

검색결과 726건 처리시간 0.025초

유한요소법에 의한 ZnO 바리스터 동작 시 발생되는 열폭주 현상 해석 (Analysis of Thermal Runaway Phenomenon Caused by ZnO Varistor Operation Using Finite Element Method)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.372-376
    • /
    • 2022
  • Since the ZnO varistor is a semiconductor device, the internal thermal distribution during the varistor operation is recognized as an important factor in the performance and deterioration of the varistor. For an optimal varistor structure design, the thermal runaway phenomenon during the varistor operation was interpreted using the Comsol 5.2 analysis program by a finite element analysis. The maximum temperature of the center measured in the cross section of the ZnO varistor was confirmed to increase as the temperature moved from the lower electrode to the center towards the upper electrode up to 572.6 K. The electrodes are thinned so that the influence of the Schottky barrier is not great. The heat gradient balance is determined to be improved when the electrode of the hybrid form is introduced. The thickness, density, pore distribution, impurity uniformity, and particle size of the ZnO varistor are required, and it is determined that the pyrolysis gradient will be improved regardless of the electrode thickness. When these results are applied to design the ZnO varistor, the optimal structure of the ZnO varistor can be obtained.

근접장 기록을 위한 부상형 광학 헤드의 최적설계 (Optimal Design of Optical Flying Head for Near-field Recording)

  • 윤상준;김석훈;정태건;김수경;최동훈
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.785-790
    • /
    • 2003
  • This paper presents an approach to optimally design the air-hearing surface (ABS) of the optical flying head for near-field recording technology (NFR) NFR is an optical recording technology using very small beam spot size by overcoming the limit of beam diffraction. One of the most important problems in NFR Is a head disk interface (HDI) issue over the recording band during the operation. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state. The optimal solution of the slider, whose target flying height is 50 nm, is automatically obtained. The flying height during the steady state operation becomes closer to the target values than those for the Initial one. The pitch and roll angles are also kept within suitable ranges over the recording band. Especially. all of the all-hearing stiffness are drastically increased by the optimized geometry of the air hearing surface.

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

시물레이션과 진화 전략을 이용한 가스 오븐 조립라인의 최적 설계 (The Optimal Design of gas oven assembly line with the Simulation and Evolution Strategy)

  • 김경록;이홍철
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.715-718
    • /
    • 2009
  • The assembly line is one of the typical process hard to analyze with mathematical methods including even stochastic approaches, because it includes many manual operations varying drastically depending on operators' skills. In this paper, we suggest the simulation optimization method to design the optimal assembly line of a gas oven. To achieve the optimal design, firstly, we modeled the real gas oven assembly line with actual data, such as assembly procedures, operation rules, and other input parameters and so on. Secondly, we build some alternatives to enhance the line performance based on business rules and other parameters. The DOE(Design Of Experiment) techniques were used for testing alternatives under various situations. Each alternatives performed optimization process with evolution strategy; one of the GA(Genetic Algorithm) techniques. As a result, we can make about 7% of throughputs up with the same time and cost. By this process, we expect the assembly line can obtain the solution compatible with their own problems.

  • PDF

회분식 공정과 회분식 증류공정을 복합한 순차적 다목적 공정의 최적 운용전략 및 생산일정계획 (Optimal Operation Strategy and Production Planning of Sequential Multi-purpose Batch Plants with Batch Distillation Process)

  • 하진국;이의수
    • 제어로봇시스템학회논문지
    • /
    • 제12권12호
    • /
    • pp.1163-1168
    • /
    • 2006
  • Manufacturing technology for the production of high value-added fine chemical products is emphasized and getting more attention as the diversified interests of customers and the demand of high quality products are getting bigger and bigger everyday. Thus, the development of advanced batch processes, which is the preferred and most appropriate way of producing these types of products, and the related technologies are becoming more important. Therefore, high-precision batch distillation is one of the important elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. Accordingly, proposing a process structure explanation and operation strategy of such processes including batch processes and batch distillation would be of great value. We investigate optimal operation strategy and production planning of multi-purpose plants consisting of batch processes and batch distillation for the manufacturing of fine chemical products. For the short-term scheduling of a sequential multi-purpose batch plant consisting of batch distillation under MPC and UIS policy, we proposed a MILP model based on a priori time slot allocation. Also, we consider that the waste product of being produced on batch distillation is recycled to the batch distillation unit for the saving of raw materials. The developed methodology will be especially useful for the design and optimal operations of multi-purpose and multiproduct plants that is suitable for fine chemical production.

자동차용 차동 베벨기어의 최적 예비성형체 설계 (The Optimal Preform Design for Automotive Differential Bevel Gear)

  • 김병민;김동환;정구섭
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석 (The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing)

  • 최영;이규호;고대철;김병민;최재찬
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

고속 공기 주축부를 위한 복합재료 주축의 최적 설계 (Optimal Design of a High Speed Carbon Composite Air Spindle)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Optimal Design of an IPMSM for High-Speed Operation Using Electromagnetic and Stress Analysis

  • Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.377-381
    • /
    • 2009
  • In the development of an interior permanent magnet synchronous machine (IPMSM) for high-speed operation, the problem of mechanical stress of the rotor by centrifugal force becomes more essential as the speed and size of the machines increase. In this paper, the optimal design process combined with mechanical stress analysis was presented. In the analysis of mechanical stress, the node and element data obtained by the electromagnetic field analysis program are also used in the stress analysis. Therefore, the different pre-processing for the stress analysis program is no longer required. Therefore, the computing time of the new method is very short compared with the conventional approach, and when repeated analyzes of various models are required, this method is very useful. The validity of our methods was verified by comparing simulation results with conventional and experimental data.

외전형 FSPM(Flux Switching Permanent Magnet) 전동기의 고속 운전을 위한 최적 설계 (Optimal Design of an Outer-rotor Flux-switching Permanent Magnet Motor for High Speed Operation)

  • 이재광;장진석;김병택
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2035-2042
    • /
    • 2011
  • In this paper, we proposed the outer-rotor type of FSPM motor for high speed operation and optimized motor shape. First of all, combinations of pole and slot numbers are examined for the optimal back-EMF and cogging torque, then optimizes the better shape design of the permanent magnet, rotor pole width. Further, The winding turns are obtained by circle of the voltage limit equation and motor parameters to minimize the current and to improve the efficiency. As a result, the performance of the designed model is satisfied, and it is verified through a two-dimensional finite element method (2D-FEA).