• Title/Summary/Keyword: Optimal deployment

Search Result 164, Processing Time 0.022 seconds

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

Green pathway to hydrogen fuel cell vehicle (수소 연료전지차로의 전환을 위한 녹색 전략)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

A Study on the Passenger Airbag Design Parameters Influencing Child Injury (어린이 상해에 영향을 주는 조수석 에어백 설계 인자에 대한 연구)

  • Choi, Won-Jung;Kim, Kwon-Hee;Ko, Hun-Keon;Kim, Dong-Seok;Son, Chang-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • The passenger airbag(PAB) designed for standard sized adults may induce unexpected results to children in out-of-position(OOP) postures. In this work, using MADYMO software, simulations of the OOP injury of children have been performed with respect to PAB design parameters and child dummy positions. The attention is focused on some details with respect to the injury of 3 and 6 year old children in two OOP postures. Among the various design parameters of the passenger airbag systems, four parameters are selected for the sensitivity analysis of the injury with the Taguchi method: bag folding pattern, vent hole size, position of the cover tear seam and the type of door tear seam. An optimal combination of the parameters is suggested.

A Dynamic Channel Switching Policy Through P-learning for Wireless Mesh Networks

  • Hossain, Md. Kamal;Tan, Chee Keong;Lee, Ching Kwang;Yeoh, Chun Yeow
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.608-627
    • /
    • 2016
  • Wireless mesh networks (WMNs) based on IEEE 802.11s have emerged as one of the prominent technologies in multi-hop communications. However, the deployment of WMNs suffers from serious interference problem which severely limits the system capacity. Using multiple radios for each mesh router over multiple channels, the interference can be reduced and improve system capacity. Nevertheless, interference cannot be completely eliminated due to the limited number of available channels. An effective approach to mitigate interference is to apply dynamic channel switching (DCS) in WMNs. Conventional DCS schemes trigger channel switching if interference is detected or exceeds a predefined threshold which might cause unnecessary channel switching and long protocol overheads. In this paper, a P-learning based dynamic switching algorithm known as learning automaton (LA)-based DCS algorithm is proposed. Initially, an optimal channel for communicating node pairs is determined through the learning process. Then, a novel switching metric is introduced in our LA-based DCS algorithm to avoid unnecessary initialization of channel switching. Hence, the proposed LA-based DCS algorithm enables each pair of communicating mesh nodes to communicate over the least loaded channels and consequently improve network performance.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.

Multi-Objective Handover in LTE Macro/Femto-Cell Networks

  • Roy, Abhishek;Shin, Jitae;Saxena, Navrati
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.578-587
    • /
    • 2012
  • One of the key elements in the emerging, packet-based long term evolution (LTE) cellular systems is the deployment of multiple femtocells for the improvement of coverage and data rate. However, arbitrary overlaps in the coverage of these femtocells make the handover operation more complex and challenging. As the existing handover strategy of LTE systems considers only carrier to interference plus noise ratio (CINR), it often suffers from resource constraints in the target femtocell, thereby leading to handover failure. In this paper, we propose a new efficient, multi-objective handover solution for LTE cellular systems. The proposed solution considers multiple parameters like signal strength and available bandwidth in the selection of the optimal target cell. This results in a significant increase in the handover success rate, thereby reducing the blocking of handover and new sessions. The overall handover process is modeled and analyzed by a three-dimensional Markov chain. The analytical results for the major performance metrics closely resemble the simulation results. The simulation results show that the proposed multi-objective handover offers considerable improvement in the session blocking rates, session queuing delay, handover latency, and goodput during handover.

A Cost-Efficient Energy Supply Sources Deployment Scheme in Wireless Sensor Networks (센서 네트워크 바용 절감을 위한 에너지 공급장치 배치 기법)

  • Choi, Yun-Bum;Kim, Yong-Ho;Kim, Jae-Joon;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.738-743
    • /
    • 2011
  • This paper considers the cost minimization issue for sensor network systems where sensor energy is supplied by remote energy sources wirelessly. Assuming symmetric structures of sensor nodes and energy sources, cost minimization problem is formulated, where the cost of sensor networks is represented as a function of sensor node density and energy source coverage. The optimal solution for the problem is provided and simulation results show that the proposal scheme achieves around 19% cost reduction in comparision to a conventional scheme.

INJURY PERFORMANCE EVALUATION OF THE CHILD RESTRAINT SYSTEMS

  • Shin, Y.J.;Kim, H.;Kim, S.B.;Kim, H.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 2007
  • The new FMVSS 208, 213, 225 regulations include automatic suppression of airbags to prevent low-risk airbag deployment and the use of child seats with a rigid-bar anchor system. The regulations mean that children must sit in the rear seat, but do not include other specific safety measures for their protection. In the rear, restraint equipment consists of three-point shoulder/lap belts for the outside seats and a static two-point lap belt in the middle, with no additional devices such as pretensioners or load limiters; this is far from optimal for children. This study investigated injury rates using a 3-year-old-child dummy. ECE R44 sled tests used a booster, a speed of 48 km/h, and a 26- to 32-g rectangular deceleration pulse. While seated on a booster, the dummies were restrained by an adult shoulder/lap three-point belt. HIC_15 msec, Chest G and Nij were somewhat lower with an emergency locking retractor (ELR)+pretensioner+load limiter than with only an ELR or with ELR+pretensioner. However, the current seat-belt system results in injury rates that exceed the limit for OOP performance under the new FMVSS 208 regulations.