• Title/Summary/Keyword: Optimal cutting conditions

Search Result 181, Processing Time 0.031 seconds

Development of Tool and Optimal Cutting Condition Selection Program (최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발)

  • Shin, Dong-Oh;Kim, Young-Jin;Ko, Sung-Lim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF

Stencil cutting process by Nd:YAG laser II -Influence of process parameters on cutting characteristics of stencil- (Nd:YAG레이저를 이용한 스텐실 절단공정II -레이저의 공정변수가 스텐실 절단특성에 미치는 영향-)

  • Lee, Je-Hoon;Seo, Jung;Kim, Jung-Oh;Shin, Dong-Sik;Lee, Young-Moon
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.47-57
    • /
    • 2001
  • This study deals with the laser cutting of stencil for the PCB. The most important aim of this study is to determine optimal conditions which make good-qualify stencil in Nd:YAG laser cutting. We made an experiment according to various variables (power. type of mask. gas pressure, cutting speed, and pulse width) and analyzed the cutting characteristics (surface roughness, kerf width. dross) . Each variable has optimal value for good-qualify cut edge under fixed condition. And neural network after learning experimental data with a million time iteration could predict surface roughness of cut edge under arbitrary condition approximately.

  • PDF

Construction of Attractor Simulator for Cutting Characteristics Evaluation of Non-Ferrous Metals (비철금속의 절삭성 평가를 위한 어트랙터 시뮬레이터의 구축)

  • 고준빈;윤인식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • This study proposes the construction of attractor simulator for cutting characteristics evaluation of non-ferrous metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of non-ferrous metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, cutting force and surface roughness are measured by tool dynamometer. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics. Constructed attractor in this study can be used for cutting characteristics evaluation of non-ferrous metals

Improvement of the Accuracy in Cornering Cut Using End Mill (엔드밀의 코너 가공시 가공 정밀도 향상에 관한 연구)

  • Kim, Yong-Hyeon;Go, Seong-Rim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.399-407
    • /
    • 2001
  • The Surface, generated by end milling operation, is deteriorated by tool runout, vibration, friction, tool deflection, etc. Especially in cornering cut, surface accuracy is usually determined by varying cutting forces, which causes tool deflections. Cutting conditions like feed rate is usually kept constant during machining a part, which causes dimensional error in severe cutting. Cornering cut is a typical example of deterioration of surface accuracy when constant feed rate is applied. Therefore it becomes important to develop NC post processor module to determine optimal cutting conditions in various cutting situations. In this paper, cutting force is predicted in cornering cut with flat end mill and feed rate is determined by constraining constantly resultant force. Also some control characteristics of CNC machining center are evaluated.

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

Is optimal cutting temperature compound essential embedding solution treatment to cryo-sectioning of brain tissue?

  • Baek, Hye Kyung;Song, Ji Ae;Yi, Sun Shin
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • We tested a set of conditions for obtaining optimal tissue quality in preparation for histology in samples of mouse brain. C57BL/6J mice were sacrificed and perfused with 4% paraformaldehyde, after which the brains were removed and dehydrated in 30% sucrose solution. The brains were then divided into four groups according to freezing temperature and usage of optimal cutting temperature (OCT) compound. Next, we stained the sectioned brain tissues with Harris hematoxylin and eosin Y and immunohistochemistry was performed for doublecortin. The best quality tissue was obtained at $-25^{\circ}C$ and by not embedding with the OCT compound. When frozen at $-25^{\circ}C$, the embedded tissue was significantly damaged by crystals, while at $-80^{\circ}C$ there were no meaningful differences between qualities of embedded- and non-embedded tissues. Overall, we identified a set of conditions to obtain quality frozen brain sections. Our developed protocol will help resolve matters associated with damage caused to sectioned brain tissue by crystal formation during freezing.

Development of Laser Process and System for Stencil Manufacturing

  • Lee, Jae-Hoon;Jeong Suh;Shin, Dong-Sig;Kim, Jeon-O;Lee, Young-Moon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • Stencil is used normally as a mask for solder pasting on pad of a printed circuit board (PCB). The objective of this study is to develop a stencil cutting system and determine the optimal conditions to make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse duration on the cut edge quality were investigated. In order to analyze the cut surface characteristics (roughness, kerfwidth, dross) optical microscopy, SEM microscopy and roughness measurements were used. As a result, the optimal conditions of cutting process parameters were determined, and the practical feasibility of the proposed system was also examined by using a commercial Gerber file for PCB stencil manufacturing.

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF