• 제목/요약/키워드: Optimal cutting conditions

검색결과 181건 처리시간 0.024초

CNC 자동선반을 이용한 SCM415강의 소형 깊은 내경홀 가공 특성 연구 (A Study on the Machining Characteristics of SCM415 Steel with Small Deep Inner Diameter Holes Using CNC Automatic Lathes)

  • 최철웅;김진수
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.23-30
    • /
    • 2022
  • Small-scale production is increasing, and the manufacturing industry is gradually changing into a smart manufacturing industry. Therefore, research on securing optimal cutting conditions for factors affecting machining precision during cutting is very important. Therefore, the purpose of this study is to After machining the inner diameter hole of SCM415 steel with a cermet tool on a CNC automatic lathe, the surface roughness, dimensional accuracy, and dimensional straightness are measured according to the feed rate to analyze the machining characteristics and suggest optimal cutting conditions. The test material was cut using a cermet tool for secondary cutting after a round bar with a diameter of 20 mm was mounted on a CNC automatic lathe. The cutting length was fixed at 0.5 mm, and the cutting speed was fixed at 3200 rpm. When the feed rate was changed to 0.05, 0.1, and 0.15 mm/rev, the respective surface roughness during the 15th test was measured. Consequently, The lower the feed rate, the better is the surface roughness. In addition, the optimum cutting conditions for SCM415 steel were observed to be the most ideal cutting conditions than the condition of 0.05 mm/rev at a cutting speed of 3,200 rpm and a feed rate of 0.1 mm/rev.

MQL 공급시스템을 이용한 플라스틱 금형강 가공 최적화에 관한 연구 (A Study on The Optimization of Plastic Mold Steel Machining Using MQL Supply System)

  • 홍광표;송기혁;이인철;강동성;정재화;임동욱;김운용;백시영
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.7-14
    • /
    • 2017
  • This study manufactured a minimum quantity lubrication (MQL) supply system and identified the optimal MQL machining cutting conditions for plastic mold steel (SCM440). A series of experiments were consisted of twice. Optimal cutting conditions were derived using the Taguchi method, and cutting force variance; surface roughness; tool wear; and cutting temperature in dry, wet, and MQL machining were measured experimentally for these optimal conditions. The measured results decreased from dry to wet and MQL machining, being particularly large for dry machining due to increased cutting time. Measured MQL machining metrics were similar to those for wet machining, particularly for surface roughness, which is an index of machining quality.

Al합금의 초정밀 절삭특성 연구 (A Study on the Characteristics of Ultra-Precision Cutting for Al Alloy)

  • 김우순;김동현;난바의치
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.44-49
    • /
    • 2003
  • To obtain the surface roughness with range from 10nm to 1nm we need the study of ultra-precision machine, cutting condition, and materials. In this paper, the optimal cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning machine and sing1e crystal diamond tool. In generally, the cutting conditions such as feed rate and depth of cut have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200. Therefore, The surface roughness and cutting conditions has been clarified. The smooth surface of aluminum alloy less than 1nm RMS, 1nm Rmax can be obtained by the ultra-precision cutting.

볼 엔드밀 가공시 형상특징을 고려한 이송속도의 최적화에 관한 연구 (Feedrate Optimization in the Ball Endmilling Process Considering Shape Features)

  • 김병희
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.257-265
    • /
    • 1996
  • When machining of a free-form surface with a ball endmill it is very important to select proper cutting conditions considering the geometrical shape of a workpiece to make the production more effective and reduce the machining time. Even though the same cutting conditions and materials are used, the cutting system of different geometry part machining shows the different static/dynamic characteristics. In this study, through various cutting experiments, we can construct the data base of stable cutting conditions for the machining of a Zine Alloy. We can get some relational plots between the optimal feedrates and classified shape features and parameters. On the basis of these results, we can develop the feedrate optimization program OptiCode. The developed program make it possible to reduce the cutting time and increase the machining accuracies.

  • PDF

기계가공 최적화를 위한 가이드시스템에 관한 연구 (A Study on Guide System for Optimization of Machining Process)

  • 최종근;양민양
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.71-83
    • /
    • 1989
  • The optimization in the machining process has been a long-standing goal of the manufacturing community. The optimization is composed of two main subjects;one is to select an optimum cutting condition, and the other is to detect the emergency situation and take necessary actions in real-time base. This paper proposes a reliable and practical guide system whose purpose is the optimization of cutting conditions, and the detection of tool failure in the machining process. The optimal cutting conditions are determined through the estimation of tool wear rate and the establishment of access- ible field from the measured cutting temperature and force. Tool breakage is detected by the normal force component acting on minor flank face extracted from on-line sensed feed force and radial force. In experiments, the proposed guide system has proved availability for the decision of reliable cutting conditions for the given tool-work system and the detection of tool breakage in ordinary cutting environments.

  • PDF

Al7050-T7451 소재의 밀링가공에서 반응표면법에 의한 가공성평가 및 가공안정화를 위한 절삭조건선정 (Investigation of Cutting Conditions for Stable Machining and Machinability Evaluation in Milling Process of Al7050-T7451 by Response Surface Methodology)

  • 구준영;조문호;김혁;김정석
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.284-290
    • /
    • 2014
  • Aluminum alloy is a core material for structural parts of aircraft and automobiles to reduce the weight and maintain high specific strength. This study evaluates the machinability and investigates the optimal cutting conditions considering the surface integrity and productivity for Al7050-T7451 milling. The machining variables considered are the feed per tooth, spindle speed, axial depth of the cut, and radial depth of the cut. The machinability evaluation of Al7050-T7451 is conducted by analyzing the cutting force signals, acceleration signals, AE signals, and machined surface conditions. The optimal cutting conditions are determined by analyzing the experimental results using response surface methodology for stable machining considering the productivity and surface integrity.

김치생산용 알타리무 전처리 가공시스템 개발(I) - 무청·뿌리끝부 절단장치 - (Development of the Altari Radish Pre-Processing System for Kimch Production (I) - Leaf and root tail cutting equipment -)

  • 민영봉;김성태;강동현;정태상;나우정
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.451-456
    • /
    • 2004
  • To establish a Altari radish pre-processing system far kimchi, the leaves and root tail of the Altari radish cutting de-vices were developed. The cutting resistances depend on the edge angles, oblique angles and cutting speeds were measured and analyzed. The experiments were performed to reveal the optimal conditions that showed the minimum cutting resistances acting on the materials. As the results, the optimum conditions that acting on the leaves were at edge angle $25^{\circ}$, oblique angle $40^{\circ}$ and cutting speed 0.5 m/s, and those acting on the root tails were at edge angle $20^{\circ}$, oblique angle $30^{\circ}$ and cutting speed 0.5 m/s, respectively. Considered a safety conception, the oblique angle of the leaves cutting device was adjusted as $20^{\circ}$, and then the cutting efficiencies of the both devices at these conditions were showed perfect performances.

Drill 가공에 있어서 단계이송가공에 관한 기초적 연구 (A Study on Step Feed Working in Drilling)

  • 전언찬
    • 한국정밀공학회지
    • /
    • 제6권3호
    • /
    • pp.24-31
    • /
    • 1989
  • By use of the machining center, step-feed drilling was operated under the variety of conditions as to materials, tools and cutting conditions. Based on this study the following conclusions can be drawn : 1) The cutting force can be diminished by utilizing the step-feed working; specially the most effective was it for the brass among the carbon steel, the brass, and the cast iron. 2) Tool life can be enlarged more than double when three-step-feed working is used. 3) For the constant cutting-depth(30mm), the most optimal number of stepping is 3.

  • PDF

Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구 (A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process)

  • 홍광표;조명우;최인준
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.

어트랙터 사분면법을 이용한 비철금속의 초정밀 절삭특성 평가에 관한 연구 (The Study on Ultra-Precision Cutting Characteristics Evaluation of Non-Ferrous Metals Using Attractor Quadrant Method)

  • 고준빈;김건희;윤인식
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.20-26
    • /
    • 2003
  • This study proposes the construction of attractor quadrant method for high-precision cutting characteristics evaluation of non-ferrous metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of non-ferrous metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, using diamond turning machine to Perform cutting Processing, by measuring cutting force and surface roughness and according to cutting conditions the aluminum about cutting properties. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics and attractor quadrant characteristics. In quantitative quadrant feature extraction, 1,309 point in the case of A17075 (one quadrant) and 1,406 point (one quadrant) in the case of brass were proposed on the basis of attractor reconstruction. Proposed attractor quadrant method can be used for high-precision cutting characteristics evaluation of non-ferrous metals.