• Title/Summary/Keyword: Optimal blanking order

Search Result 6, Processing Time 0.018 seconds

Development of Optimal Layout Design System in Multihole Blanking Process (Multihole 블랭킹 가공시 최적 레이아웃 설계시스템의 개발)

  • 정성재;김동환;김병민;전영학
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2003
  • The multihole blanking of thin sheet metal using progressive die set is an important process on production of precision electronic machine parts such as IC leadframe. In this paper, in order to investigate the influence of blanking order on the final lead profile and deformed configuration, simulation technique for progressive blanking process is proposed and analyzed by LS-DYNA. The results of FE-simulations are in good agreement with the experimental results. Consequently, from the results of FE-analysis based on the procedure proposed in this paper, it is possible to predict the deformation of lead and to manufacture high precision leadframes in progressive blanking process and these results might be used as a guideline to develop layout design system in multihole blanking process.

Development of An Optimal Layout Design System in Multihole Blanking Process

  • Lee, Sun-Bong;Kim, Dong-Hwan;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • The blanking of thin sheet metal using progressive dies is an important process on production of precision electronic machine parts such as IC leadframe. This paper summarizes the results of simulating the progressive blanking process by means of LS/DYNA. In order to verify the influence of blanking order on the final lead profile and deformed configuration, simulation technique has been proposed and analyzed using a commercial FEM code, LS/DYNA. The results of FE-simulations are in good agreement with the experimental result. After then, to construct rule base in progressive blanking process, FE-simulation has been performed using a simple model. Based on this result rule base is set up and then the blanking order of inner lead is rearranged. Consequently, from the results of FE-simulation using suggested method in this paper, it is possible to predict the shift of lead to manufacture high precision lead frame in progressive blanking process. The proposed method can give more systematic and economically feasible means for designing progressive blanking process.

Effect of V-Ring Indenter on the Sheared Surface in the Fine Blanking Process of a Pawl (폴의 파인 블랭킹 공정에서 전단면에 미치는 V형 돌기의 영향에 관한 연구)

  • Kim, Yun-Joo;Kwak, Tae-Soo;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.102-108
    • /
    • 2000
  • A finite element analysis has been performed to investigate the effect of v-ring indenter on the sheared surface in the fine blanking of a pawl which is a part of the automotive safety belt and is made of S45C sheet. In the present analysis the Cockcroft and latham fracture criterion and the element kill method are used in order to simulate the blanking operation successfully. The simulation results are obtained for various positions and heights of the v-ring indenter. And the theoretical results are compared with available experimental results. It is shown that this FEM simulation result can be useful for predicting the optimal fine blanking condition of real products.

  • PDF

Progressive Process planning and die design to improve the formability in fine blanking of the lock plate in car seatbelt (자동차 좌석벨트의 록 플레이트의 정밀타발 시 성형성 향상을 위한 프로그레시브 공정 및 금형 설계)

  • Lee, Sang-Pill;Min, Byung-Hyun;Lee, Kwan-Young;Ko, Young-Jun;Kim, Chul;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.84-92
    • /
    • 2013
  • This study improves the formability in fine-blanking the lock plate of car seat belts using a low carbon steel(SM35C) plate. The optimal die design for the forming process is proposed using rules for process planning based on theories and field experiences. The optimal design is analyzed using commercial finite element software in order to solve the fracture problems in the extrusion process. Through the improved layout based on the FEM results, the fracture of the extruded part and the roll over problem are solved. Furthermore, it is demonstrated through the shown from experiments that the extruded part does not break in the modified die.

Development of High Precision Plate Holder in Automotive Seat Recliner by Mechanical Press(II) : Control of Burr Formation (기계식 프레스에 의한 자동차 시트 리클라이너의 고정밀 플레이트 홀더 개발(II) : 버 형성 제어)

  • Kim, Byung-Min;Choi, Hong-Seok;Chang, Myung-Jin;Bae, Jae-Ho;Kim, Dong-Hwan;Ko, Dae-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.64-71
    • /
    • 2008
  • Burr generated on plate holder should be removed through additional process, because it has an influence on the function of automotive seat recliner. The process layout to perform simultaneously embossing and half blanking of plate holder has been developed in this study in order to minimize the influence of burr formation. The optimal process condition to satisfy the required dimensional accuracy of plate holder has been determined using Taguchi method and finite element analysis. It has been shown from experimental results that the proposed method is decidedly superior to the previous FCF method from the aspect of sheared surface, roll-over, flatness and burr height.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.