• Title/Summary/Keyword: Optimal allocation rule

Search Result 30, Processing Time 0.022 seconds

Optimum Water Allocation System Model in Keumho River Basin with Mathematical Programming Techniques (수리계획을 이용한 금호강유역의 최적 물배분 시스템모델)

  • 안승섭;이증석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-85
    • /
    • 1997
  • This study aims at the development of a mathematical approach for the optimal water allocation in the river basin where available water is not in sufficient. Its optimal allocation model is determined from the comparison and analysis of mathematical programming techniques such as transportation programming and dynamic programming models at its optimal allocation models. The water allocation system used in this study is designed to be the optimal water allocation which can satisfy the water deficit in each district through inter-basin water transfer between Kumho river basin which is a tributary catchment of Nakdong river basin, and the adjacent Hyungsan river basin, Milyang river basin and Nakdong upstream river basin. A general rule of water allocation is obtained for each district in the basins as the result of analysis of the optimal water allocation in the water allocation system. Also a comparison of the developed models proves that there is no big difference between the models Therefore transportation programming model indicates most adequate to the complex water allocation system in terms of its characteristics It can be seen, however, that dynamic programming model shows water allocation effect which produces greater net benefit more or less.

  • PDF

A Batch Sequential Sampling Scheme for Estimating the Reliability of a Series/Parallel System

  • Enaya, T.;Rekab, L.;Tadj, L.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • It is desired to estimate the reliability of a system that has two subsystems connected in series where each subsystem has two components connected in parallel. A batch sequential sampling scheme is introduced. It is shown that the batch sequential sampling scheme is asymptotically optimal as the total number of units goes to infinity. Numerical comparisons indicate that the batch sequential sampling scheme performs better than the balanced sampling scheme and is nearly optimal.

  • PDF

Diversification, performance and optimal business mix of insurance portfolios

  • Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1503-1520
    • /
    • 2013
  • For multi-line insurance companies, allocating the risk capital to each line is a widely-accepted risk management exercise. In this article we consider several applications of the Euler capital allocation. First, we propose visual tools to present the diversification and the line-wise performance for a given loss portfolio so that the risk managers can understand the interactions among the lines. Secondly, on theoretical side, we prove that the Euler allocation is the directional derivative of the marginal or incremental allocation method, an alternative capital allocation rule in the literature. Lastly, we establish the equivalence between the mean-shortfall optimization and the RORAC optimization when the risk adjusted capital is the expected shortfall, and show how to construct the optimal insurance business mix that maximizes the portfolio RORAC. An actual loss sample of an insurance portfolio is used for numerical illustrations.

Bandwidth Allocation and Scheduling Algorithms for Ethernet Passive Optical Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-79
    • /
    • 2010
  • This paper considers bandwidth allocation and scheduling problems on Ethernet Passive Optical Networks (EPON). EPON is one of the good candidates for the optical access network. This paper formulates the bandwidth allocation problem as a nonlinear mathematical one and characterizes the optimal bandwidth allocation which maximizes weighted sum of throughput and fairness. Based upon the characterization, two heuristic algorithms are suggested with various numerical tests. The test results show that our algorithms can be used for efficient bandwidth allocation on the EPON. This paper also shows that the WSPT (Weighted Shortest Processing Time) rule is optimal for minimization the total delay time in transmitting the traffic of the given allocated bandwidth.

On the Optimal Allocation of Labour Gangs in the Port (항만하역 노동력의 효율적인 배분에 관하여)

  • Lee, Cheol-Yeong;Woo, Byung-Goo
    • Journal of Korean Port Research
    • /
    • v.1 no.1
    • /
    • pp.21-47
    • /
    • 1987
  • Nowaday all the countries of the world have studied the various problems caused in operating their own ports efficiently. Ship delay in the port is attributal to the inefficient operation in the navigation aids, the cargo handling, the storage and transfer facilities, and to the inefficient allocation of gangs or to a bad service for ships. Among these elements the allocation of gangs is the predominating factor in minimizing ship's turn round time. At present, in the case of Pusan Port. the labour union and stevedoring companies allocate gangs in every hatches of ships by a rule of thumb, just placing emphasis on minimizing ship's turn round time, without applying the principle of allocation during the cargo handling. Owing to this the efficiency of the cargo handling could not be expected to be maximized and this unsystematic operation result in supplying human resources of much unnecessary surplus gangs. Therefore in this paper the optimal size and allocation of gangs for minimizing the ship's turn round time is studied and formularized. For the determination of the priority for allocation the evaluation function, namely $F=PHi^{n}{\times}(W+H)$, can be obtained; where, PHI : Principal Hatch Index W : Total Cargo Weight represented in Gang-Shifts H : Total Number of Ship's hatches and also for the optimal size of gangs the average number of gang allocated per shift (Ng), namely Ng=W/PHI, is used. The proposed algorithm is applied to Pusan Port and its validity is verified.

  • PDF

A Maximum Data Allocation Rule for an Anti-forensic Data Hiding Method in NTFS Index Record

  • Cho, Gyu-Sang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.17-26
    • /
    • 2017
  • An anti-forensic data hiding method in an NTFS index record is a method designed for anti-forensics, which records data as a file name in index entries and thereafter the index entries are made to remain in the intentionally generated slack area in a 4KB-sized index record[7]. In this paper, we propose a maximum data allocation rule for an anti-forensic data hiding method in an NTFS index record; i.e., a computational method for storing optimal data to hide data in an index record of NTFS is developed and the optimal solution is obtained by applying the method. We confirm that the result of analyzing the case where the number of index entries n = 7 is the maximum case, and show the screen captures of index entries as experimental results.

Optimum Allocation of Port Labor Gangs (I) In the case of single ship (항만하역노동력의 최적배분에 관한 연구 (I) 단일선박의 경우)

  • 이철영;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.1
    • /
    • pp.55-61
    • /
    • 1989
  • Nowadays much efforts for evaluating the productivity of port physical distribution system to meet the rapid change of the port and shipping circumstances has been made continuously all over the world. The major part of these efforts is the improvement of the productivity of cargo handling system. The cargo equipment system as infrastructure in the cargo handling system is organized well in some degrees, but the management system of manpower as upper structure is still remained in an insufficient degree. There is little study, so far, on a systematic research for the management of port labor gang, and even those were mainly depended on rule of thumb. The object of this study is to introduce the method of optimal allocation and assignment for the labor gang in single ship, which was suggested as a first stage in dealing with them generally. The problem of optimal allocation and assignment of the labor gang can be (I) formalized with multi-stage allocation and assignment of the labor gang can be. (II) dealt with two stages in form of hierarchic structure and moreover, (III) The optimal size of labor gang was obtained through dynamic programming from the point of minimizing the summation of labor gang in every stage, (IV) For the problem of optimal assignment, the optimal policy was determined at the point of minimizing the summation of movement between hatches.

  • PDF

Design of the Reconfigurable Load Distribution Control Allocator

  • Yang, Inseok;Kang, Myungsoo;Sung, Jaemin;Kim, Chong-Sup;Cho, Inje
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • This paper proposes the load distribution control allocation technique. The proposed method is designed by combining a conventional control allocation method with load distribution ability in order to reduce the stress acting on ailerons. By designing the weighting matrix as a function of the load distribution rule, the optimal deflection angles of each surface to satisfy both control goal and load distribution can be achieved. Moreover, rule based fault-tolerant control technique is also proposed. The rules are generated by considering both dominant control surfaces and the ratio of load distribution among surfaces. The performance of the proposed method is evaluated through numerical simulations.

OPTIMUM ALLOCATION OF PORT LABOR GANGS IN CASE OF MULTIPLE SHIPS (항만하역노동력의 최적배분에 관한 연구 (II) 선박군의 경우)

  • 이철영;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.3
    • /
    • pp.37-44
    • /
    • 1989
  • Recently recognize the labor productivity of port physical distribution system in the port and shipping areas, Much Efforts for evaluating this productivity has been made continuously. BUt still there is little study, so far, on a systematic research for the management of port labor gangs, and even those were mainly depended on a rule of thumb. Especially the object of this study is to introduce the method of optimal allocation and assignment for the labor gangs per pier unit in the multiple ships berthed at an arbitary pier or port. In case the multiple ships have a homogeneous cargoes or do not have sufficient labor gangs to be assigned. The problem of optimal allocation and assignment of the labor gangs to be i) formalized with multi-state decision process in form of difference equation as the pattern which converted the independent multiple ships into a single ship with the intra-multiple ships, and ii) the optimal size of labor gangs could be obtained through the simple mathematical method instead of complicated dynamic programming, and iii) In case of shortage of labor gangs available the evaluation function considering the labor gangs available and total shift times was introduced, and iv) the optimal allocation and assignment of labor gangs was dealt at the point of minimizing the summation of the total shift times and at the point of minimizing the total cost charged for the extra waiting time except PHI time during port times for the multiple ships combinations.

  • PDF

Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation (PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화)

  • Song, Hwa-Chang;Ko, Jae-Hwan;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.792-797
    • /
    • 2011
  • This paper discusses the application of a hybrid discretiziation method for the discretization procedure that needs to be included in discrete particle swarm optimization (DPSO) for the problem of allocating PV (photovoltaic) systems onto distribution power systems. For this purpose, this paper proposes a rule-based expert system considering the objective function value and its optimizing speed as the input parameters and applied it to the PV allocation problem including discrete decision variables. For multi-level discretization, this paper adopts a hybrid method combined with a simple rounding and sigmoid funtion based 3-step and 5-step quantization methods, and the application of the rule based expert system proposing the adequate discretization method at each PSO iteration so that the DPSO with the hybrid discretization can provide better performance than the previous DPSO.