• 제목/요약/키워드: Optimal Welding Conditions

검색결과 117건 처리시간 0.03초

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구 (Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

유전 알고리즘을 이용한 V그루브 아크 용접 공정변수 최적화 (Optimization of V-groove Arc Welding Process Using Genetic Algorithm)

  • 안홍락;이세헌;안승호;강문진
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.172-175
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. According to the conventional full factorial design, in order to find the optimal welding conditions, 16,384 experiments must be performed. The genetic algorithm however, found the near optimal welding conditions from less than 60 experiments.

  • PDF

원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화 (Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery)

  • 정지선;박순서;김지호;권혁무;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제48권1호
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

박판 Al 7075-T6재의 점용접시 용접조건변화에 대한 강도특성 (Strength Characteristics for Various Spot Welding Conditions in 7075-T6 Aluminum Alloy Sheets)

  • 윤한기;김건태;류인일
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.215-218
    • /
    • 1999
  • With increasing demand of energy saving, -many efforts were made to employ aluminium alloys in the automobile industry. Especially, resistance spot welding has been widely used in the steel metal joining process because of its high productively and convenience. In this paper, spot weldability of 7075-T6 aluminium thin sheets for various welding conditions were examined by series of experiments. The tensile shear strength and microstructure of welded specimens was observed, and The optimal welding conditions were found for each welding conditions.

  • PDF

이종금속의 상온압접에 관한 연구 (A study on the cold pressure welding of dissimilar metals)

  • 엄기원;이철구
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.19-27
    • /
    • 1987
  • This paper presents the weldability for cold pressure but welding method in junction of dissimilar metals each other. Although the weldability between the same aluminium metal plate welding has been studied, the study of itthe rod of aluminium and coper has not fully been investigated. The purpose is to suggest the optimal conditions on the rod of those under above method. To obtain the optimal conditions, associated experiments were performed in a various welding parameters. Consequently, it was proved that the mechanical properties such as tensile strength, hardness and bending strength could be obtained excellent particularly under the welding conditions; pressure is $(32~39) {\times} 10^3/kg/cm^2$, time is beyond 70 seconds, stage is higher than fifth stage.

  • PDF

저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구 (Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology)

  • 박현성;김태형;이세헌
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.76-81
    • /
    • 2003
  • Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)

가접부를 고려한 필릿 용접조건의 선정에 관한 연구 (A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds)

  • 이준영;김재웅;김철희
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.29-36
    • /
    • 2006
  • In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method used the response surface analysis in which the leg length and the reinforcement height were chosen as the quality variables of the weld bead profile. The overall desirability function, which was combined desirability function fur the two quality variables, was employed as the objective function for getting the optimal welding condition. In the experiments, the target values of the leg length and the reinforcement height are 6m and zero respectively for the horizontal fillet weld of 10mm thickness mild steel. The optimal welding conditions could predict the weld bead profile(leg length and reinforcement height) as 6.00mm and 0.19mm without tack weld and 6.00mm and 0.48mm with tack weld. from a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정 (Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint)

  • 윤석철;김재웅
    • Journal of Welding and Joining
    • /
    • 제27권1호
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.