• Title/Summary/Keyword: Optimal Water Allocation

Search Result 50, Processing Time 0.03 seconds

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

Power Allocation and Splitting Algorithm with Low-complexity for SWIPT in Energy Harvesting Networks (에너지 하베스팅 네트워크에서 SWIPT를 위한 저복잡도를 갖는 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.917-922
    • /
    • 2016
  • Recently, energy harvesting, in which energy is collected from RF signals, has been regarded as a promising technology to improve the lifetime of sensors by alleviating the lack of power supply problem. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer. At first, we find the lower bound of water-level using the probability density function of channel, and derive the solution of power allocation in energy harvesting networks. In addition, we derive an efficient power splitting method for satisfying the minimum required harvested energy constraint. The simulation results confirm that the proposed scheme improves the average data rate while guaranteeing the minimum required harvested energy constraint, compared with the conventional scheme. In addition, the proposed algorithm can reduce the computational complexity remarkably with insignificant performance degradation less than 10%, compared to the optimal solution.

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Adaptive Management of Water Supply Systems to Deal with Climate Changes: A Gwangdong Dam Case Study (기후 변화 대응을 위한 상수도 시설 적응형 관리의 필요성: 2008-2009 광동댐 취수 제한 사례 연구)

  • Lee, Sangeun;Choi, Dongjin;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.583-598
    • /
    • 2009
  • From the engineering standpoint, this study puts a special emphasis on application of adaptive management. To do this, we analyze the recent issue about water scarcity of the Gwangdong dam. Using the system dynamics model, we defined the system including water balance in the dam, dam manager's operation rules, regional water supply and local water distribution, and customer damage. It was expected that the model is useful to explain the real case, and also water scarcity of Gwangdong led to total damage of about 2.56 billion won, mainly to customers in the Taebaeck city. Two adaptive management options (i.e., optimal allocation of limited water resources, and early control of dam storage) were applied to the model in order to examine whether adaptive management is effective to mitigate the damage, it is concluded that the case study could largely reduce or entirely avoid the damage with adaptive engineering options.

The Study on a Reservoir Environment Development Method of Coast Small Islands using 0-1 Integer Programming (0-1 정수 계획법을 이용한 해양 도서지역 상수원 환경 개발 방법에 관한 연구)

  • Joo, K.S.;Park, S.H.
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.127-132
    • /
    • 2007
  • This study is to determine an optimal reservoir among many alternative proposals in order to obtain the maximized efficiency under the limited budget. There are many alternative proposals which deal with problems to assign reservoir such as water conversion establishment construction, subterranean water, reservoir, submarine pipeline, water boat, and marine water saving base construction. In this paper, the new model to assign the most reasonable alternative is introduced using 0-1 integer programming. This proposed model has not been applied in the optimal reservoir selection problem yet. This paper will contribute to determine the most reasonable alternative to minimize budget under constraints. Also, this proposal model can be applied to other reservoir selection problem in other regions.

  • PDF

Optimal Reservour Operation for Flood Control Using a Hybrid Approach (Case Study: Chungju Multipurpose Reservoir in Korea) (복합 모델링 기법을 이용한 홍수시 저수지 최적 운영 (사례 연구 : 충주 다목적 저수지))

  • Lee, Han-Gu;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.727-739
    • /
    • 1998
  • The main objectives o reservoir optimal operation can be described as follows : maximization of the benefits through optimal allocation of the limited water resources for various purpose; minimization of t도 costs by the flood damage in potential damaging regions and risk of dam failure, etc. through safe drainage of a bulky volume of excessive water by a proper reservoir operation. Reviewing the past research works related to reservoir operation, we can find that the study on the matter of the former has been extensively carried out in last decades rather than the matter of the latter. This study is focused on developing a methodology of optimal reservoir operation for flood control, and a case study is performed on the Chungju multipurpose reservoir in Korea. The final goal of the study is to establish a reservoir optimal operation system which can search optimal policy to compromise two conflicting objectives: downstream flood damage and dam safety-upstream flood damage. In order to reach the final goal of the study, the following items were studied : (1)validation of hydrological data using HYMOS: (2)establishment of a downstream flood routing model coupling a rainfall-runoff model and SOBEK system for 1-D hydrodynamic flood routing; (3)replication of a flood damage estimation model by a neural network; (4)development of an integrated reservoir optimization module for an optimal operation policy.

  • PDF

Composite Differential Evolution Aided Channel Allocation in OFDMA Systems with Proportional Rate Constraints

  • Sharma, Nitin;Anpalagan, Alagan
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.523-533
    • /
    • 2014
  • Orthogonal frequency division multiple access (OFDMA) is a promising technique, which can provide high downlink capacity for the future wireless systems. The total capacity of OFDMA can be maximized by adaptively assigning subchannels to the user with the best gain for that subchannel, with power subsequently distributed by water-filling. In this paper, we propose the use of composite differential evolution (CoDE) algorithm to allocate the subchannels. The CoDE algorithm is population-based where a set of potential solutions evolves to approach a near-optimal solution for the problem under study. CoDE uses three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. In CoDE, three trial vectors are generated for each target vector unlike other differential evolution (DE) techniques where only a single trial vector is generated. Then the best one enters the next generation if it is better than its target vector. It is shown that the proposed method obtains higher sum capacities as compared to that obtained by previous works, with comparable computational complexity.

Reserch on Optimal Water Allocation Methodology for Real Time Water Management System (실시간 물관리 시스템을 위한 최적 물배분 방식에 대한 연구)

  • Lee, Jin-Hee;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.493-497
    • /
    • 2007
  • 한정된 수자원에 대한 수요가 급증하고 수질 및 환경문제가 대두되면서 수자원 계획 및 관리에 대한 관심이 많아지고 있는 실정이다. 이러한 수자원 계획 및 관리는 물리적으로 복잡해진 수자원 시스템 뿐만 아니라 사회적, 제도적 시스템을 반영할 필요성이 생겼으며 수자원 계획 및 관리자들의 의사결정에 도움을 주기 위하여 효율적인 여러 대안들의 평가나 수자원 관리(운영)가 필수적이다. 효율적인 수자원 계획 및 관리에 있어서 물배분은 매우 중요하며 이를 통해 급증하는 용수 수요에 효과적으로 대처하고 합리적인 수자원 관리(운영)을 실현할 수 있을 것이다. 본 연구에서는 실시간 물관리 시스템을 핵심이라고 할 수 있는 물배분 방식에 대한 연구로서 최적 물 배분 연구를 수행하였으며 연구의 목적은 시간적, 공간적 물부족량을 파악할 수 있는 모형을 바탕으로 현존하는 물배분 방식 즉, 선점주의(Prior Appropriation), 연안주의(Riparian), 공공 물배분, 경제적 물배분 등을 물배분 방식을 검토하고 수자원 관리자가 현업에서 효율적인 의사결정을 지원할 수 있는 최적 물배분 방식을 제시하는 것이다.

  • PDF

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Hydraulic analysis of design alternatives to improve an industrial water distribution system (공업용수 배수관망시스템을 개선하기 위한 설계 대안의 수리해석)

  • Lim, Seong-Rin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • A CCTV inspection method has been widely used to assess sewer condition and performance, but Korea lacks a proper decision support system for prioritizing sewer repair and rehabilitation (R&R). The objective of this paper is to introduce the results that we have developed in the Sewer Condition Assessment and Rehabilitation Decision-making (SCARD) Program using MS-EXCEL. The SCARD-Program is based on a standardized defect score for sewer structural and hydraulic assessment. Priorities are ranked based on risk scores, which are calculated by multiplying the sewer severity scores by the environmental impacts. This program is composed of three parts, which are decision-making for sewer condition and performance assessment, decision-making for sewer R&R priority assessment, and decision-making for optimal budget allocation. The SCARD-Program is useful for decision-makers, as it enables them to assess the sewer condition and to prioritize sewer R&R within the limited annual budget. In the future, this program logic will applied to the GIS-based sewer asset management system in local governments.